

2021年度2Q技術標準案

一般社団法人情報通信技術委員会(TTC)伝送網・電磁環境専門委員会

2021年9月10日

組織図

Telecommunication Technology

【新規:1件,改定:1件,廃止:0件】

TTC標準	対応する国際標準
JT-Y1731 (改定制定 第2版)	ITU-T G.8013/Y.1731
JT-G709.1 (新規制定)	ITU-T G.709.1

TTC標準草案 (Draft TTC Standard)

伝送網·電磁環境専門委員会 装置機能·管理SWG

標準案概要 (1版からの主な変更箇所)

グローバルで普及が進んでいるEthernet技術のOAM機能について、2010年に TTC標準(JT-Y1731 1版)を実施していた。

1版制定から11年が経過し、ITU-TにおいてもG.8013/Y.1731の改定が行われていることから、TTC標準においても改定するべきと判断した。

TTC 標準番号	タイトル	TTC標準 制定日	TTC標準が 準拠しているITU- T勧告(今回制定)	最新ITU-T勧告
JT-Y1731	イーサネットのOAM機能とメカニズム Operation, administration and maintenance (OAM) functions and mechanisms for Ethernet-based	2010/2/24(前 回制定時)	2018/3(5版Cor1)	2019/3(5版Cor2)

【JT-Y1731での規定事項】

ETHレイヤのネットワークおよびサービスを運用、維持するのに必要なメカ ニズムについて規定する。また、イーサネットOAMフレームフォーマットお よびOAMフレームフィールドの構文と意味を規定する。

2版では、主に以下を新たに規定している。

7章 故障管理用のOAM機能

- ・イーサネットクライアント信号障害(ETH-CSF)
- ・イーサネット帯域幅通知(ETH-BN)
- ・イーサネット障害予測機能(ETH-ED)
- 8章 パフォーマンス監視のためのOAM機能
 - ・合成ロス測定(ETH-SLM)

【参考】

9章 OAM PDUタイプ

7章、8章にて追加されたOAM機能のOAM PDUタイプを規定

故障管理用のOAM機能(7章)

イーサネットクライアント信号障害機能(ETH-CSF)は、クライアント自身が適切な故障や障害の 検出またはETH-CCやETH AISなどの伝播機能をサポートしていない場合に、MEPによってイーサネッ トクライアント信号における故障や障害のイベントの検出をピアMEPに伝播するために使用される。 ETH-CSFメッセージは、故障や障害のイベントを検出する入力クライアントポートに関連するイーサ ネットMEPからイーサネットピアMEPへの方向に伝播する。

ETH-CSFメッセージは、障害のタイプも表示する.3つのCSF障害タイプが現在定義される。 クライアント信号断 (C-LOS) クライアント順方向劣化表示 (C-FDI) クライアント対局劣化表示 (C-RDI)

イーサネット帯域幅通知(ETH-BN)

イーサネット帯域幅通知機能(ETH-BN)は、サーバーMEPがクライアントレイヤMEPに送信方向 のサーバーレイヤリンク帯域幅を通知するために使用する。 たとえば、サーバーレイヤが大気の条件に従った帯域幅を調整する能力を備えるマイクロ波リンク上 にある場合である。ETH-BN情報を含むフレームは、サーバーレイヤリンクの現在および規格上の帯域 幅を伝送する。ETH-BN情報を含むフレームを受信したクライアントレイヤMEPは、サービスポリシー を調整するために帯域幅情報を使うことができる。

NOTE -B1 and B2 can be the same or different values

図7.13-1 - ETH-BN送信の例

イーサネット障害予測機能(ETH-ED)

イーサネット障害予測機能(ETH-ED: Ethernet expected defect function)は、CCMフレーム送 信が(データフレームの中断無しに)中断されることを予測し、ピアMEPで導通断障害を抑制すべき であることをMEPからピアMEPに通知するために使用される。ETH-ED情報が含まれるフレームは、 MEPのMEP IDと予想される中断期間を通知する。

パフォーマンス監視のためのOAM機能(8章)

合成損失測定(ETH-SLM)

合成損失測定は、データトラフィックではなく合成フレームを使用してフレームロスを測定するメ カニズムである。多数の合成フレームが送受信され、失われたフレームの数が算出される。これは統 計的なサンプルとして扱うことができ、データトラフィックのフレームロス率を概算するために使用 できる。

<u>シングルエンドETH-SLM</u>

シングルエンドETH-SLMはプロアクティブまたはオンデマンドOAMのために使用される。それはポイントツーポイントETH接続およびマルチポイントETH接続の両方に適用できる合成ロス測定を実行する。これによりMEPは、同じMEGのピアMEPの一つまたはセットに関連付けられた遠端および近端ロス測定を起動し報告することができる。

<u> デュアルエンドETH-SLM</u>

デュアルエンドETH-SLMはオンデマンドとプロアクティブOAMに使用することができる。それはポ イントツーポイントETH接続またはマルチポイントETH接続の両方に適用できるロス測定を実行す る。それによりMEG内のMEPがピアMEPでフレームロス測定を促すためにETH-SLM情報を持つ周期的 なデュアルエンドフレームをそのピアMEPに送信することができる。受信側MEPはデュアルエンドフ レームを終端し近端ロス測定を行う。

【参考】PDUフォーマット(9章)

		1	2	3	4
	8 7 6	5 4 3 2 1	8 7 6 5 4 3 2 1	8 7 6 5 4 3 2 1	8 7 6 5 4 3 2 1
1	MEL	Version (0)	OpCode (CSF= 52)	Flags	TLV Offset (0)
5	En	d TLV (0)			

図9.21-1 CSF PDUフォーマット

		1	2	3	4	
	8 7 6	5 4 3 2 1	8 7 6 5 4 3 2 1	8 7 6 5 4 3 2 1	8 7 6 5 4 3 2 1	
1	MEL	Version (0)	OpCode (SLM = 55)	Flags (0)	TLV Offset	
5		Source 1	MEP ID	Reserved for Responder MEP ID (0)		
9			Tes	t ID		
13	TxFCf					
17	Reserved for SLR: TxFCb (0)					
21	[Optional TLV starts here, otherwise End TLV]					
25						
:						
last					End TLV (0)	

図9.22-1 SLM PDUフォーマット

			2		
	1		2	3	4
	8 7 6	5 4 3 2 1	8 7 6 5 4 3 2 1	8 7 6 5 4 3 2 1	8 7 6 5 4 3 2 1
1	MEL	Version (0)	OpCode (GNM=32)	Flags	TLV Offset (13)
5	Sub-Op	Code (BNM=1)	Nominal Bandwidth		
9	Nominal	Bandwidth (cont)	Current Bandwidth		
13	Current E	Bandwidth (Cont)	Port ID		
17	Por	rt ID (Cont)	End TLV (0)		

図9.25-1 BNM PDUフォーマット

表 10-1 - OAMフレームDA

OAMタイプ	OAM PDUフレームのDA		
ССМ	マルチキャストクラス1 DA、あるいはユニキャストDA		
LBM	ユニキャストDA、あるいはマルチキャストクラス1 DA		
LBR	ユニキャストDA		
LTM	マルチキャストクラス2DA		
LTR	ユニキャストDA		
AIS	マルチキャストクラス1 DA、あるいはユニキャストDA		
LCK	マルチキャストクラス1 DA、あるいはユニキャストDA		
TST	ユニキャストDA、あるいはマルチキャストクラス1 DA		
LINEAR APS	[ITU-T G.8031]参照		
RING APS	[ITU-T G.8032]参照		
MCC	ユニキャストDA、あるいはマルチキャスクラス1 DA		
LMM	ユニキャストDA、あるいはマルチキャストクラス1 DA		
LMR	ユニキャストDA		
1DM	ユニキャストDA、あるいはマルチキャストクラス1 DA		
DMM	ユニキャストDA、あるいはマルチキャストクラス1 DA		
DMR	ユニキャストDA		
EXM, EXR, VSM, VSR	本標準の対象外		
CSF	マルチキャストクラス1 DA、あるいはユニキャストDA		
SLM	ユニキャストDA、あるいはマルチキャストクラス1 DA		
SLR	ユニキャストDA		
1SL	ユニキャストDA、あるいはマルチキャストクラス1 DA		
BNM	マルチキャストクラス1 DA、あるいはユニキャストDA		
EDM	マルチキャストクラス1 DA、あるいはユニキャストDA		

TTC標準草案 (Draft TTC Standard)

伝送網・電磁環境専門委員会 多重分離インタフェースと網同期SWG

JT-G709.1

フレキシブルOTN短距離インタフェース (Flexible OTN short-reach interfaces) 第1版

標準案概要

光通信ネットワーク技術の進展に伴い、高速・大容量通信技術に関する標準 化が進展している。

グローバルで普及が進んでいるITU-T G.709 OTNインタフェースについても、 高速・大容量化に対応するために、従来のシリアル伝送を想定したフレーム構 造からパラレル伝送を考慮したフレーム構造への転換がなされ、ITU-T G.709.1 (Flexible OTN Interface)が制定された。 そこで、TTCにおいても新規にJT-G709.1を制定すべきと判断した。

JT-G709.1 第1版標準案

【JT-G709.1での規定事項】

Flexible-bandwidth Interoperable Short-Reach Optical Transport Network (OTN) インタフェースのセット、つまりFlexO-x-RS-mインタフ ェースグループを規定している。

このインタフェースグループでは、結合したFlexO(Flexible OTN)短距離インタフェースを使用してOTUCn (n≧1)を転送可能である。

JT-G709.1 目次構成

JT-G709.1	目次構成	(参考)ITU·	-T G.709.1/Y.1331.1 Table of contents (05/2020)
章	タイトル	Clause	Title
1	適用範囲	1	Scope
2	参考文献	2	References
3	定義	3	Definitions
4	略語と頭字語	4	Abbreviations and acronyms
5	表記規則	5	Conventions
6	概要とアプリケーション	6	Introduction and applications
7	構造とプロセス	7	Structure and processes
8	FlexOフレーム	8	FlexO frame
9	アライメントマーカーとオーバーヘッド	9	Alignment markers and overhead
10	OTUCnシグナルのn個のFlexOインスタ ンスへのマッピング	10	Mapping of OTUCn signal into n FlexO instances
11	100G FlexO-1-RSインタフェース	11	100G FlexO-1-RS interface
12	200G FlexO-2-RSインタフェース	12	200G FlexO-2-RS interface
13	400G FlexO-4-RSインタフェース	13	400G FlexO-4-RS interface
付属書A	FlexO-x-RS(x=2,4の場合)で10ビットイ ンターリーブRS(544, 514) コーデック を使用した前方誤り訂正	Annex A	Forward error correction for FlexO-x-RS ($x = 2,4$) using 10-bit interleaved RS(544,514) codecs
付録I	アプリケーション例	Appendix I	Example applications

6章: 概要とアプリケーション

□ FlexO-x-RS-mインタフェースグループに関する機能を規定

- OTUCn信号用の相互接続可能なインタフェースを提供する。
- m個の標準レートインタフェースを結合することにより、ODUflexおよびOTUCnの大容量化を可能にする。
- インタフェースレートのモジュラリティと柔軟性を提供する。
- OTUCn信号に関連しない機能、例えば、フレーム、アライメント、デ スキュー、グループ管理、管理通信チャネル等を提供する。
- [ITU-T G.709]で指定されているOTU4にインタフェースレートを一 致させることによって100Gモジュール(例:CFP 2、QSFP 28)を再利 用する。
- 本勧告で指定されているレート固有のFlexO-x-RSインタフェースは、 システム外部の参照ポイントとなる。

図7-1-FlexO-x-RS-mインタフェースグループ主要情報の関係 伝送網·電磁環境専門委員会資料

□ フレーム構造

- 本フレームは、128行 × 5140列
 のフレーム構造
- 1行目の1列目から480列目はア ライメントマーカーグループ領 域 (AM)
- 1行目の481列目から960列目は パッド領域 (PAD)
- 1行目の961列目から1280列目 はオーバーヘッド領域 (OH)
- フレームの残りの部分 (128×5140-1280=656640ビ ット)は、ペイロード領域
- マルチフレーム構造の場合、8フレー ムFlexOマルチフレーム構造が定義される。

9章:アライメントマーカーとオーバーヘッド

伝送網·電磁環境専門委員会資料

FlexOフレームには下記のアライメントマーカーやオーバーヘッドが含まれる

- レーンアライメントマーカー(AM)
 レーンのアライメント、順序付け、レーン間のスキュー調整に利用されるレーンごとに固有のビットパタン
- ・ パッド(PAD)
 すべて「0」の値を持つ領域
- マルチフレーム同期信号 (MFAS)
 マルチフレーム構造を提供するために、 FlexOフレームごとにインクリメントされる領域
- ステータス (STAT) 汎用的に用いられるステータス表示
- グループ識別子 (GID)
 インタフェースが同一のFlexOグループに属していることを確認するための識別子
- FlexOインスタンス識別子 (IID)
 m個のFlexO-x-RSインタフェースの間で固有の値をもつ識別子
- FlexOマップフィールド (MAP) インスタンスがグループに属する場合、該当するビット
- を「1」に設定 ・ OTUCの可用性 (AVAIL)

FlexO-1-RS(100G)インタフェースの場合に値を「1」に 設定

・ 巡回冗長検査 (CRC)

FAS/OSMC/FCC以外のOH領域の整合性を確認するためのCRC-16

- FlexOコミュニケーションチャネル (FCC)
 FlexO-x-RSインタフェースごとに約17.98 Mbit/sの通信
 チャネルを提供
- OTN同期メッセージチャネル (OSMC) 同期ステータスメッセージ (SSM) および PTP メッセー ジを転送するためのチャネル
- ・ 将来の国際標準用に予約されたビット(RES)

Telecommunication Technology

Committee

10章:OTUCnシグナルのn個のFlexO インスタンスへのマッピング

□ FlexOとOTUCnの対応

OTUCnフレームはn個の同期されたOTUCフレームインスタンスからなる。それぞれのOTUCインスタンスは1つのFlexOインスタンスに収容される (図10-1)。FlexOインスタンスはインタフェースの帯域幅に応じてm個のFlexOインスタンスを結合し、 FlexO-x-RSインタフェースを構成する。 □ FlexOフレームへのOTUCのマッピング

OTUC信号のマッピングの際、FlexOフレームのペイロード領域は128ビットのブロックに分割される。OTUC信号の128ビットのグループは、ビット同期手順(BMP)によりFlexOフレームのペイロード領域へマッピングされる

図10-1-n*FlexOフレームインスタンスに分散されたOTUCn

11章:100G FlexO-1-RSインタフェース

□ FlexO-1-RSフレーム構造

FlexO-1-RSフレームは、1から5140列がペイロードエリア、5,141から5,440列が FECパリティ領域からなる128行×5,440ビット列で構成される。(図11-1)

図11-1-100G FlexO-1-RSフレーム構造

ビットレート
 FlexO-1-RS信号のビットレートは約111809474.446 kbit/sとなる。(表11-1)

表11-1-100G FlexO-1-RSタイプとビットレート

 100G FlexO-1-RS公称ビットレート。 	ビットレート許容偏差。			
30592/27233×99 532 800 kbit/s -	±20 ppm .			
注1:100G FlexO-1-RSの公称ビットレートは約111 809 474.446 kbit/sとなる。				
注2:100G FlexO-1-RSビットレートは、次のようにOTUCビットレートを基準にすることができる。256/241×OTUCビ ットレート=256/241×239/226×99 532 800 kbit/s。				
注3:結果として100G FlexO-1-RSビットレートは、OTU4公称ビットレートの-4.46 ppmオフセット以内となる。。				

11章:100G FlexO-1-RSインタフェース

□ FOIC1.4-RSインタフェース

FOIC1.4-RSインタフェースは、28Gbit/sの4つの物理インタフェースを使用して、 マルチチャネルパラレルインタフェースで構成される。

FEC符号化後、データおよびパリティビットは、最小レーンから最大レーンまでの ラウンドロビン方式で、4つの論理FOIC1.4レーンに10ビットのグループで分配され る。(表11-3)

له	レーン0+	レーン1+	レーン2+	レーン3+
AMビット∂	AM 0の10ビットシン ボル。	AM 1の10ビットシン ボル。	AM 2の10ビットシン ボル。	AM 3の10ビットシン ボルッ
1-40*	0101100101+2	0101100101+2	0101100101+2	0101100101
41~80 +7	0100100110+2	0100100110+2	0100100110+2	0100100110
81~120 +2	0100011011+2	0100001000+2	0100011000+2	0100010110
121~160+	0110100110+2	0010100110+2	1010100110+2	1010100110
161~200+2	1010110110+2	1010110110+2	1010110110+2	1010110110
201~240+2	0110111001	0110111110+2	0110110111	0110110010+2
241~280+2	1011100000+2	0110010110+2	1111011111#	0001011000
281~320+2	0010001110+2	1001111011+2	0011001111+2	010000001
321~360+	1100111101+2	011111000+2	0110101010+2	0000101111.0
361~400+	1001000111+2	0110011010+2	0000001000↔	0111101001
401~440*	1111011100+2	0101100001 47	0011001100 @	1110111111.0
441~480₽	0100110000+2	001000001+2	0010010101 +2	1011110100
注:各10ビットワードの送信順序は左から右となる(MSBが最初)。FlexOフレーム内の転送順序は、行を左から右に横切り、テーブルを下にする。各レーンの送信順序は、ワード単位でテーブルの下方向となる。。				

表11-3-4つのFOIC1.4-RSレーンでのAMビット分布

12章: 200G FlexO-2-RSインタフェース

□ FlexO-2-RSフレーム構造

FlexO-2-RSフレームは、2つの10ビットインターリーブされた100G FlexOフレー ムから構成される。(図12-2)

m×200G FlexO-2-RSグループがn<2mのOTUCnを伝送する場合は、n個のOTUC nが#1,#2,#3…の順で100G FlexOフレームに収容される。OTUCが収容されない FlexOフレームのGIDフィールドはすべて0に設定される。(図12-1)

12章: 200G FlexO-2-RSインタフェース

OTUC ····· **††** The remainder □ FOIC2.4-RSインタフェース OTUC deskew OTUCs to m-1 200G FlexO lane †† FOIC2.4-RSインタフェースは、56Gbit/sの4つの物 OTUC #1 OTUC #2 The remainder OTUCs to m-1 me/multif 200G FlexO lanes alignmer alignmen 16-Byte Sync Mapping 16-Byte Sync Mapping 理インタフェースを使用して、マルチチャネルパラレ Map to 100G FlexO #. Reuse 100G Demap from 100G FlexO # Frame Map to Demap fro 128*5140 bits 100G FlexO #1 FlexO Proces 100G FlexO # ルインタフェースで構成される。 ····· 🛉 (1)FlexO-n reorder 100G FlexO 00G FlexO OH insert Frame served 480 bi 128*5140 bits 100G FlexO 100G FlexO The remainde 100G FlexOs M placehold OH extract OH extrac **ロ** FOIC2.4-RSインタフェースプロセス from m-1 200G 10-bit FlexO lanes interleaved 200G FlexO-2-RSプロセス(図12-5) は、大きく以下の Frame 3つのプロセスで分けられる。 Scrambler (200G FlexO) Descrambler (200G FlexC 128*(2*544)*10 bits New design ①OTUCをFlexOフレームに収容 Frame AM insertior AM removal 128*(2*544)*10 bits (2)(100G FlexOのプロセスを再利用) 10-bit round-robin RS(544-514) RS(544.514) RS(544,514) RS(544-514 ②スクランブラで、AMとFECを除いた箇所がスクラン 2*128*544*10-bit symbols decode decode 2*(128 codewords 100G FlexO # 100G ElexO #1 EC sub-row # FEC sub-row # ブルされ、その後にAM挿入 Mux and 10-bit symbol 256*544 10-bit symbols Lane deskew, reorde ③FECエンコード後、2つのFECコードワードの各セット distribution Reuse 200GE and de-interleave PCS/FEC は、10ビットベースでインターリーブされ、最小番号か $(\mathbf{3})$ FOIC2.8-RS NM3 NM4 NM5 NM6 W M7 M2 32*544 10-bit symbols ら最大番号のレーンまでラウンドロビン方式で8つの論理 2:1 bit mux 1:2 bit demux レーンに分配 FOIC2.4-RS G.709.1-Y.1331.1(18)-Amd.1(19) F12-6 (IEEE 802.3 200GE PCS下部とFECプロセスを再利用) 図12-5-200G FlexO-2-RSプロセス

13章:400G FlexO-4-RSインタフェース

□ FlexO-4-RSフレーム構造

4つのFlexOフレームが10bitインタリーブされてFlexO-4-RSフレームが構成される。 (図13-2)

m×400G FlexO-4-RSグループがn<4 mのOTUCnを伝送する場合は、n個のOTUC n が#1,#2,#3…の順でFlexOフレームに収容される。OTUCが収容されないFlexOフレームのGIDフィールドはすべて0に設定されOTUCが収容されていないことを示す。(図13-1)

図13-1-部分充填の場合の400G FlexO-4-RS#m信号内の100G FlexOフレーム

図13-2-400G FlexO-4-RSフレーム構造へのFlexOインスタンスのマッピング

13章:400G FlexO-4-RSインタフェース

■ FlexO-4-RSインターフェースプロセス プロセスは下記三つに分けられる。

- 100G FlexO 再利用部分(図13-5の①)
 100G FlexOへのOTUCのインスタンスプロセス
 を再利用している。
- 400G FlexO-4-RS新規部分(図13-5の②) スクランブラ/デスクランブラ、AM挿入/除去の プロセスは新規に設計されている。
 スクランブラ/デスクランブラは400G FlexO-4-RS フレーム先頭で初期化される。
 AMとFECのパリティシンボル領域は
 スクランブルされずAMフィールドの値は
 DCバランスが取れたユニークな値が挿入され
 FECパリティシンボル領域はFECで付加される。
- IEEE 802.3 400GE PCS/FEC 再利用部分(図13-5の③) 400GEのPCS下部とFECプロセスを再利用している

図13-5-400G FlexO-4-RSプロセス

FlexO-x-RSインタフェースのアプリケーション例は図I.1および図I.2のようなルー タ (R) ノードとトランスポート (T) ノード間のOTNハンドオフや、異なる管理ドメ イン間のハンドオフなどが想定される。

図I.1-FlexO-x-RSハンドオフルータ転送の例

図I.2-FlexO-x-RSドメイン間ハンドオフの例

伝送網·電磁環境専門委員会資料

Telecommunication Technology <u>Committee</u>