TTC SC-SWG

SMS-03-GSV-01

Original: English

Tokyo, Japan 5-6-7 August 2003

SOURCE¹: GlobespanVirata, Inc.

拡大アップストリームオーバラップ(OL)システムのスペクトル適合性

概要

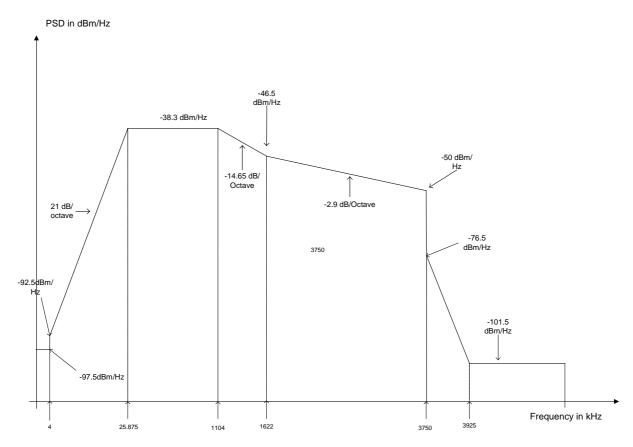
本稿では、276kHz 以下の拡大アップストリームチャネルと 25.875kHz を開始周波数とするオーバラップ(OL)クワッドスペクトルのダウンストリームとを組み合わせた高速システムのスペクトル適合性についての評価を行う。

本稿に示す考察で得られた結果にもとづいて、さらに総務省のスペクトル適合性基準 2003 年改訂版に従って、拡大アップストリーム OL システムは、保護システムと同じ象限内において 3.25km までの線路長に対して使用可能であると言うことができる。

」連絡先:

1 イントロダクション

本稿では、276kHz 以下の拡大アップストリームチャネルと 25.875kHz を開始周波数とするオーバラップ(OL)クワッドスペクトルのダウンストリームとを組み合わせた高速システムのスペクトル適合性についての評価を行う。


第2章では、アップストリームマスクとダウンストリームマスクの機能について詳述する。第3章では、 スペクトル適合性テーブルについて説明する。

2 拡大アップストリーム OL マスクの定義

2.1 ダウンストリーム: OL クワッドスペクトル

図1と表2-1に、OLクワッドスペクトルマスクの機能を示す。

図 1 OL クワッドスペクトルマスク図 (尖頭値)

[1] PSD (dBm/Hz) [2] 周波数 (kHz

表 2-1 クワッドスペクトルマスク (尖頭値)

Frequency (kHz)	PSD (dBm/Hz) Peak values
0 <f<4< th=""><th>-97.5</th></f<4<>	-97.5
4 <f<25.875< th=""><th>"-92.5 + 21.log2.(f/4)"</th></f<25.875<>	"-92.5 + 21.log2.(f/4)"
25.875 <f<1104< th=""><th>-38.3</th></f<1104<>	-38.3
1104 <f<1622< th=""><th>"-38.3 - 14.75.log2.(f/1104)"</th></f<1622<>	"-38.3 - 14.75.log2.(f/1104)"
1622 <f<3750< th=""><th>"-46.5 - 2.9.log2.(f/1622)"</th></f<3750<>	"-46.5 - 2.9.log2.(f/1622)"
f=3750	-76.5
f>3925	-101.5

[3] 周波数 (kHz) PSD (dBm/Hz) の尖頭値

2.2 拡大アップストリームマスク

図2と表2-2に、拡大アップストリームマスクの機能を示す。

図2 拡大アップストリームマスク図(尖頭値)

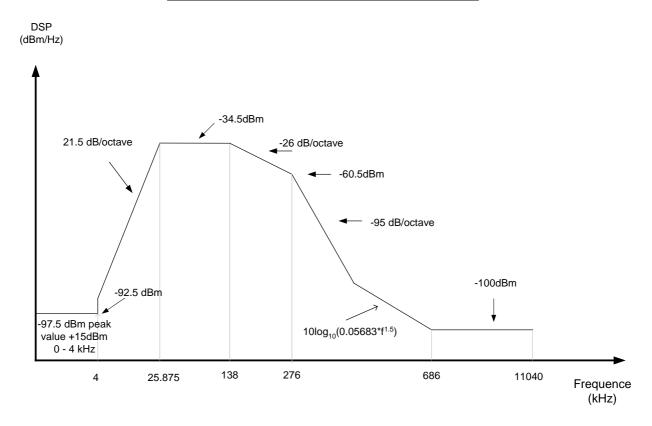


表 2-2 拡大アップストリームマスクの定義 (尖頭値)

Frequency (kHz)	PSD (dBm/Hz) Peak values
0 <f<4< th=""><th>-97.5</th></f<4<>	-97.5
4 <f<25.875< th=""><th>"-92.5 + 21.5.log2.(f/4)"</th></f<25.875<>	"-92.5 + 21.5.log2.(f/4)"
25.875 <f<138< th=""><th>-34.5</th></f<138<>	-34.5
138 <f<276< th=""><th>"-34.5 - 26.log2.(f/138)"</th></f<276<>	"-34.5 - 26.log2.(f/138)"
276 <f<f_int< th=""><th>"-60.5 - 95.log2.(f/276)"</th></f<f_int<>	"-60.5 - 95.log2.(f/276)"
f_int <f<686< th=""><th>10log10(0.05683*f^(1.5))</th></f<686<>	10log10(0.05683*f^(1.5))
f>686	-100

[1]周波数(kHz) PSD(dBm/Hz)の尖頭値

3 スペクトル適合性テーブル

3.1 基準テーブル

表 3-1 に、保護システムの基準性能を示す。

表 3-1 保護システムの基準性能テーブル

	TCM-ISE	ON G	.992.1 Anne	ex A G	992.2 Annex A G.992.1 Annex C					G.992.2 Annex C				
Dist		(FDM)					DBI	M	FB	М	DBM		FBM	
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	144	144	7104	832	3008	832	7104	832	2624	288	3008	832	1088	288
0.75	144	144	6784	832	2944	832	6912	832	2592	288	2944	832	1088	288
1	144	144	5952	832	2624	832	6368	832	2528	288	2752	832	1088	288
1.25	144	144	4896	800	2272	800	5696	800	2496	288	2528	800	1088	288
1.5	144	144	3840	768	1824	768	5024	800	2432	288	2272	800	1088	288
1.75	144	144	2496	736	1440	736	4192	768	2400	288	2016	768	1088	288
2	144	144	1696	704	960	704	3680	736	2336	288	1696	736	1088	288
2.25	144	144	1088	640	640	640	3296	704	2240	288	1504	704	1088	288
2.5	144	144	704	576	352	576	3008	672	2080	288	1312	672	1056	288
2.75	144	144	480	512	160	512	2720	640	1856	288	1216	640	1056	288
3	144	144	320	448	96	448	2368	576	1536	288	1184	576	1024	288
3.25	144	144	224	352	64	352	1984	512	1280	288	1152	512	992	288
3.5	144	0	128	288	32	288	1632	480	1056	288	1120	480	928	288
3.75	0	0	64	224	32	224	1344	448	832	256	1088	448	832	256
4	0	0	32	192	0	192	1088	416	640	256	1024	416	704	256
4.25	0	0	0	160	0	160	928	416	480	256	928	416	576	256
4.5	0	0	0	128	0	128	768	384	352	224	832	384	416	224
4.75	0	0	0	96	0	96	608	352	224	224	704	352	288	224
5	0	0	0	64	0	64	416	352	128	224	544	352	192	224

3.2 拡大アップストリーム OL システムのスペクトル適合影響テーブル

表 3-2 に、5 つの拡大アップストリーム OL システム(1 つの象限内システムと4 つの象限間システム)が干渉源として存在する場合の保護システムの性能を示す。

表 3-2 拡大アップストリーム OL システムのスペクトル適合影

TCM-ISDN G.992.1 Annex A G.992						ex A	G.992.	1 Annex C						
Dist		(FDM)					DBM FE			BM DBM			FBM	
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	144	144	7104	832	3008	832	7104	832	2624	288	3008	832	1088	288
0.75	144	144	7104	832	3008	832	7104	832	2624	288	3008	832	1088	288
1	144	144	7072	832	3008	832	7072	832	2592	288	3008	832	1088	288
1.25	144	144	6944	832	3008	832	6944	832	2560	288	3008	832	1088	288
1.5	144	144	6848	832	2976	832	6848	832	2528	288	2976	832	1088	288
1.75	144	144	6752	832	2976	832	6752	832	2496	288	2976	832	1088	288
2	144	144	6592	800	2912	800	6592	800	2432	288	2912	800	1088	288
2.25	144	144	6368	768	2848	768	6368	768	2336	288	2848	768	1056	288
2.5	144	144	6016	704	2752	704	6016	704	2208	256	2752	704	1024	256
2.75	144	144	5504	672	2624	672	5504	672	2016	224	2624	672	960	224
3	144	144	4768	608	2496	608	4768	608	1760	224	2496	608	928	224
3.25	144	144	3776	512	2368	512	3776	512	1376	192	2368	512	864	192
3.5	0	0	2944	448	2144	448	2944	448	1088	160	2144	448	768	160
3.75	0	0	2208	352	1856	352	2208	352	800	128	1856	352	672	128
4	0	0	1568	288	1536	288	1568	288	576	96	1536	288	544	96
4.25	0	0	1088	224	1216	224	1088	224	384	64	1216	224	448	64
4.5	0	0	704	160	896	160	704	160	256	32	896	160	320	32
4.75	0	0	416	96	576	96	416	96	128	32	576	96	192	32
5	0	0	192	64	320	64	192	64	64	32	320	64	96	32

3.3 基準テーブルと拡大アップストリーム OL システムのスペクトル適合影響テーブルとのデルタ

表 3-3 に、保護システムの基準性能と 5 つの拡大アップストリーム OL システムが干渉源として存在する場合の当該システムの性能とのデルタを示す。表 3-3 から、拡大アップストリームシステムは、3.25km までは Annex C の DBM および TCM-ISDN に対して影響を与えることがない。

表 3-3 基準性能と拡大アップストリーム OL システムを有する場合の性能とのデルタ

	TCM-ISE	ON G	.992.1 Anne	x A G	.992.2 Anne	ex A	G.992.	1 Annex C			G.992.			
Dist		(FDM)					DBI	M	FB	M	DBN	FBM		
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.75	0	0	-320	0	-64	0	-192	0	-32	0	-64	0	0	0
1	0	0	-1120	0	-384	0	-704	0	-64	0	-256	0	0	0
1.25	0	0	-2048	-32	-736	-32	-1248	-32	-64	0	-480	-32	0	0
1.5	0	0	-3008	-64	-1152	-64	-1824	-32	-96	0	-704	-32	0	0
1.75	0	0	-4256	-96	-1536	-96	-2560	-64	-96	0	-960	-64	0	0
2	0	0	-4896	-96	-1952	-96	-2912	-64	-96	0	-1216	-64	0	0
2.25	0	0	-5280	-128	-2208	-128	-3072	-64	-96	0	-1344	-64	32	0
2.5	0	0	-5312	-128	-2400	-128	-3008	-32	-128	32	-1440	-32	32	32
2.75	0	0	-5024	-160	-2464	-160	-2784	-32	-160	64	-1408	-32	96	64
3	0	0	-4448	-160	-2400	-160	-2400	-32	-224	64	-1312	-32	96	64
3.25	0	0	-3552	-160	-2304	-160	-1792	0	-96	96	-1216	0	128	96
3.5	144	0	-2816	-160	-2112	-160	-1312	32	-32	128	-1024	32	160	128
3.75	0	0	-2144	-128	-1824	-128	-864	96	32	128	-768	96	160	128
4	0	0	-1536	-96	-1536	-96	-480	128	64	160	-512	128	160	160
4.25	0	0	-1088	-64	-1216	-64	-160	192	96	192	-288	192	128	192
4.5	0	0	-704	-32	-896 p ₂	oe 1820f (64	224	96	192	-64	224	96	192
4.75	0	0	-416	0	-576	80 0 01	192	256	96	192	128	256	96	192
5	0	0	-192	0	-320	0	224	288	64	192	224	288	96	192

4 結論および提案

総務省のスペクトル適合性基準 2003 年改訂版に従って、拡大アップストリーム OL システムは、保護システムと同じ象限内において 3.25km までの線路長に対して使用可能であると言うことができる。