A情報通信技術委員会 スペクトル管理 SWG 第 1 回会合

日付:2003年7月3日

提出元¹: Centillium Communications

題名:ダブル及びクアドスペクトラムの下りのためのディスターバモデル

1. 提案の概要

JJ100.01 及び G.996.1 では ADSL トランシーバによって発生する漏話の計算のための ADSL ディスターバモデルが定義されている。ディスターバモデルは送信 PSD とは異なっている。特にディスターバモデルでは SINC 機能、ローパスフィルター、及びハイパスフィルターの考慮がなされている。フィルターモデルに関しては、若干の違いがあるが、JJ100.01 と G.996.1 では非常に近いモデルを使用している。JJ100.01 のフィルターモデルはより柔軟性があり、全てのスペクトル適合性の検討のために使用されている。この JJ100.01 フィルターモデルの使用を 提案する。 JJ100.01 では 1.104MHz までのシングルスペクトラムの下りに対して下記のディスターバモデルを定義している。

 $PSD_{ADSL,ds-Disturber} = K_{ADSL,ds} \times \frac{2}{f_0} \times \frac{\left[\sin\left(\pi \frac{f}{f_0}\right)\right]^2}{\left(\pi \frac{f}{f_0}\right)^2} \times \frac{1}{1 + \left(\frac{f}{f_{LP3dB}}\right)^{12}} \times \frac{1}{1 + \left(\frac{f}{f_{HP3dB}}\right)^{N'}}$

f:周波数[Hz]

 $f_0=2.208\times 10^6\, [ext{Hz}]$, $f_{LP3dB}=rac{f_0}{2}\,$ (G.992.1 の場合), $f_{LP3dB}=rac{f_0}{4}\,$ (G.992.2 の場合) $f_{HP3dB}=138\times 10^3\,$ [Hz], $N=16\,$ (FDM の場合)

 $f_{HP3dB} = 138 \times 10^{3}$ [Hz], N = 16 (FDM の場合)

 $K_{ADSL,ds} = 0.1104 \text{ [W]}$

JJ100.01 で定義されているシングルスペクトラムのためのディスターバモデルでは送信 PSD は明示されていない。帯域内のノミナル PSD は-40dbm/Hz である。帯域内ではフラットな特性であるため、スケーリングはすでに考慮されている。 PSD マスクの代わりに、138kHz 以下の帯域外のロールオフはハイパスフィルターモデルにより、また 1104kHz 以上についてはローパスフィルターモデルにより定義している。 すなわちディスターバモデルは下記の式によって表せる。

¹ 連絡先: Centillium Communications

Les Brown; Tel: +1-510-771-3662; E-mail: les@centillium.com

Guozhu Long; Tel: +1-510-771-3404; E-mail: guozhu@centillium.com Kazuhiko Goukon; Tel: +81-3-5733-8503; E-mail: goukon@centillium.com

$$PSD_{ADSL,ds-disturber}(f) = K_{ADSL,ds} \times \frac{2}{f_0} \times \frac{\left[\sin\left(\frac{\pi f}{f_0}\right)\right]^2}{\left(\frac{\pi f}{f_0}\right)^2} \times |LPF(f)|^2 \times |HPF(f)|^2 \times 10^4 \times PSD'(f)$$

ここでPSD'(f) は次式である。

$$PSD(f) = \begin{cases} -40dBm/Hz & inband \\ PSD(f) & out-of-band \end{cases}$$

このディスターバモデルを拡張したダブル及びクアドスペクトラムのディスターバモデルを提案する。

2. ダブルスペクトラムのためのディスターバモデル

ダブルスペクトラムの ADSL の下りにおいて、低域側の最小周波数はシングルスペクトラムと同一でなければならない。しかし高域側の最大周波数における PSD マスクのロールオフはシングルスペクトラムの下りの PSD マスクに比べて非常に早い。ここで PSD'(f)を下記のように定義する。

$$PSD'(f) = \begin{cases} -40dBm/Hz & f < 138kHz \\ PSD(f) & f > 138kHz \end{cases}$$

PSD(f) はダブルスペクトラムの送信 PSD である。

高域の最大周波数におけるローパスフィルターは帯域内の特性に若干の影響を与える。しかし帯域外においては PSD マスクは急速に低下するため大きな影響は存在しない。従ってダブルスペクトラムのディスターバモデルは次式で示すことが出来る。

$$PSD_{double-disturber}(f) = K_{double} \times \frac{2}{f_0} \times \frac{\left[\sin\left(\frac{\pi f}{f_0}\right)\right]^2}{\left(\frac{\pi f}{f_0}\right)^2} \times |LPF(f)|^2 \times |HPF(f)|^2 \times 10^4 \times PSD'(f)$$

$$K_{double} = 0.2208 \text{ watts}, \ f_0 = 4.416 \times 10^6 \text{ Hz}$$

$$|LPF(f)|^2 = \frac{1}{1 + \left(\frac{f}{f_{3dBLP}}\right)^{12}}$$

$$|HPF(f)|^2 = \frac{1}{1 + \left(\frac{f_{3dBHP}}{f}\right)^{16}}$$

$$f_{\it 3dBLP}=rac{f_0}{2}$$
 and $f_{\it 3dBHP}=1.38 imes10^5\,{\rm Hz}$ である。

3. クアドスペクトラムのためのディスターバモデル

同様にクアドスペクトラムの ADSL の下りのディスターバモデルが次式で定義できる。

$$PSD_{quad-disturber}(f) = K_{quad} \times \frac{2}{f_0} \times \frac{\left[\sin\left(\frac{\pi f}{f_0}\right)\right]^2}{\left(\frac{\pi f}{f_0}\right)^2} \times |LPF(f)|^2 \times |HPF(f)|^2 \times 10^4 \times PSD'(f)$$

$$K_{quad} = 0.375 \text{ watts}, \ f_0 = 2 \times 3.75 \times 10^6 \text{ Hz}$$

$$|LPF(f)|^2 = \frac{1}{1 + \left(\frac{f}{f_{3dBLP}}\right)^{12}}$$

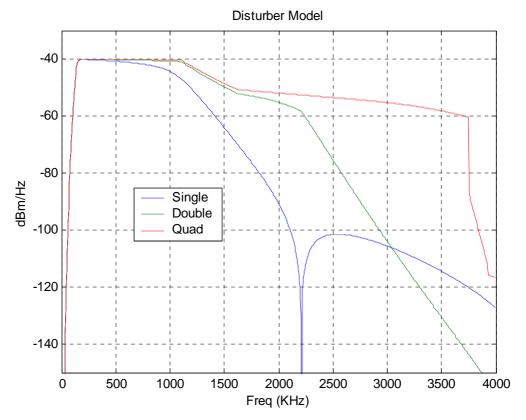
$$|HPF(f)|^2 = \frac{1}{1 + \left(\frac{f_{3dBHP}}{f}\right)^{16}}$$

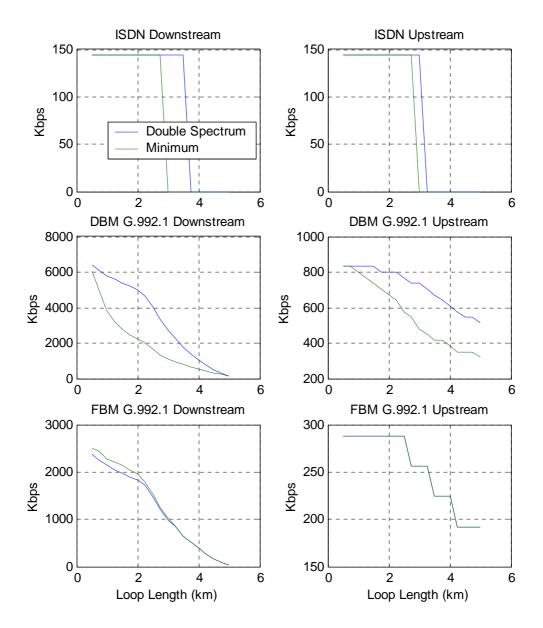
$$f_{3dBLP} = \frac{f_0}{2}$$
 and $f_{3dBHP} = 1.38 \times 10^5 \,\text{Hz}.$

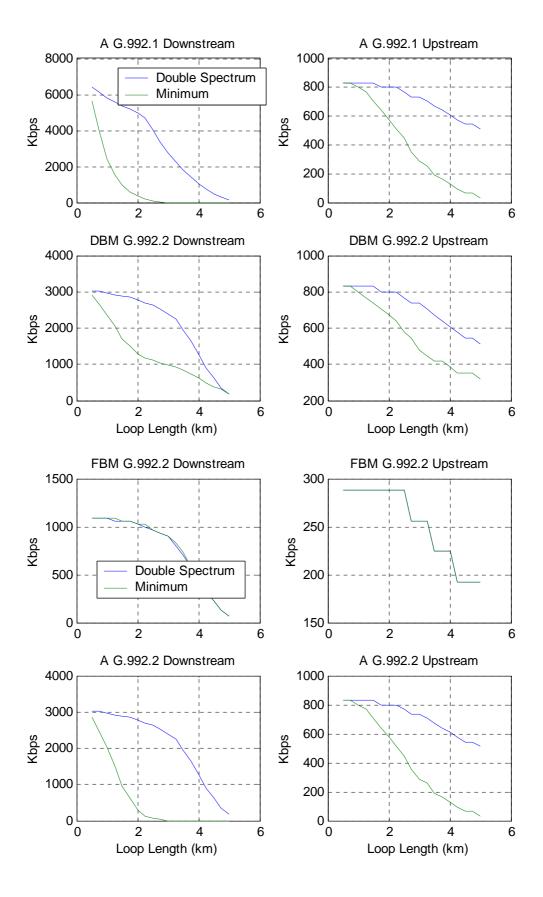
$$PSD'(f) = \begin{cases} -40dBm/Hz & f < 138kHz \\ PSD(f) & f > 138kHz \end{cases}$$

PSD(f) はクアドスペクトラムの送信 PSD である。

この提案するディスターバモデルの特性を Figure 1 に示す。



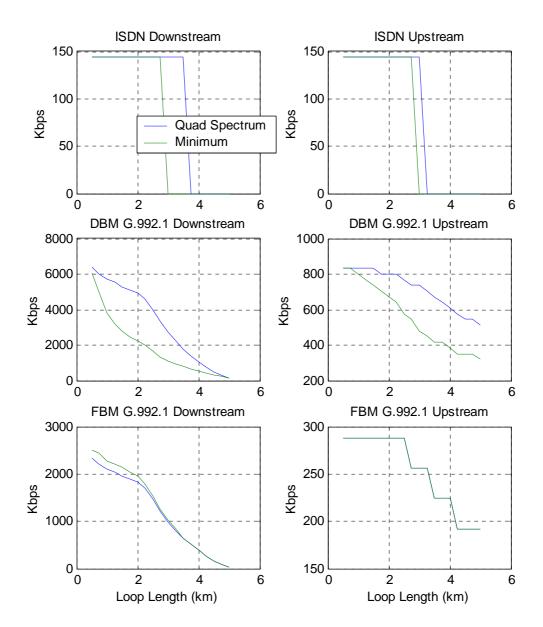

Figure 1: 提案するADSLの下りのためのシングル·ダブル·クアドスペクトラムのディスター バモデル

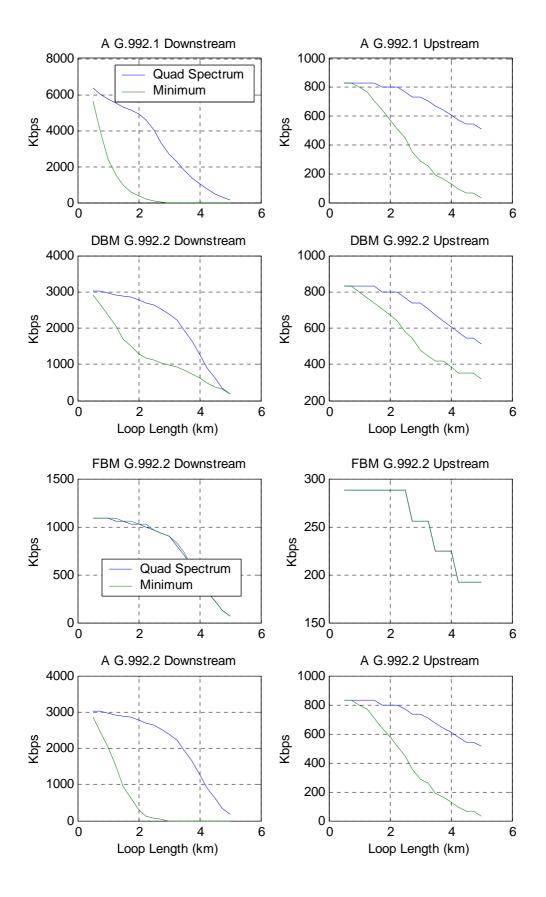

4. ダブルスペクトラムの ADSL のスペクトル適合性について

本章及び次章では、JJ100.01 第2版案でのスペクトル適合性の計算結果を示す。

Table 1: ダブルスペクトラムのスペクトル適合性

Length	ISI	DN	G.99	92.1	G.99	2.2	G. 9	92.1	Annex	C	G. 9	92.2	Annex	C
[km]			Anno	ex A	Anne	ex A	DB	M	FB	M	DB	M	FB	M
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	144	144	6400	832	3008	832	6400	832	2368	288	3008	832	1088	288
0.75	144	144	6112	832	3008	832	6112	832	2240	288	3008	832	1088	288
1.0	144	144	5792	832	2976	832	5792	832	2144	288	2976	832	1088	288
1.25	144	144	5600	832	2912	832	5600	832	2048	288	2912	832	1056	288
1.5	144	144	5376	832	2880	832	5376	832	1984	288	2880	832	1056	288
1.75	144	144	5184	800	2848	800	5184	800	1888	288	2848	800	1056	288
2.0	144	144	4960	800	2784	800	4960	800	1824	288	2784	800	1024	288
2.25	144	144	4672	800	2688	800	4672	800	1728	288	2688	800	992	288
2.5	144	144	4032	768	2624	768	4032	768	1472	288	2624	768	960	288
2.75	144	144	3360	736	2528	736	3360	736	1216	256	2528	736	928	256
3.0	144	144	2752	736	2400	736	2752	736	992	256	2400	736	896	256
3.25	144	0	2240	704	2240	704	2240	704	832	256	2240	704	800	256
3.5	144	0	1792	672	1952	672	1792	672	640	224	1952	672	704	224
3.75	0	0	1408	640	1632	640	1408	640	512	224	1632	640	576	224
4.0	0	0	1024	608	1248	608	1024	608	384	224	1248	608	448	224
4.25	0	0	736	576	896	576	736	576	256	192	896	576	320	192
4.5	0	0	480	544	608	544	480	544	160	192	608	544	224	192
4.75	0	0	288	544	352	544	288	544	96	192	352	544	128	192
5.0	0	0	128	512	192	512	128	512	32	192	192	512	64	192




5. クアドスペクトラムの ADSL のスペクトル適合性について

計算は JJ100.01 第2版案による。

Table 2: クアドスペクトラムのスペクトル適合性

Length	ISI	ISDN		2.1	G.99	2.2	G.9	92.1	Annex	C	G.9	92.2	Annex	C
[km]			Anne	ex A	Anne	ex A	DB	M	FB	M	DB	M	FB	M
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	144	144	6368	832	3008	832	6368	832	2336	288	3008	832	1088	288
0.75	144	144	6016	832	3008	832	6016	832	2208	288	3008	832	1088	288
1.0	144	144	5728	832	2976	832	5728	832	2112	288	2976	832	1088	288
1.25	144	144	5536	832	2912	832	5536	832	2048	288	2912	832	1056	288
1.5	144	144	5280	832	2880	832	5280	832	1952	288	2880	832	1056	288
1.75	144	144	5120	800	2848	800	5120	800	1888	288	2848	800	1024	288
2.0	144	144	4928	800	2784	800	4928	800	1824	288	2784	800	1024	288
2.25	144	144	4608	800	2688	800	4608	800	1696	288	2688	800	992	288
2.5	144	144	4000	768	2624	768	4000	768	1472	288	2624	768	960	288
2.75	144	144	3328	736	2528	736	3328	736	1216	256	2528	736	928	256
3.0	144	144	2720	736	2400	736	2720	736	992	256	2400	736	896	256
3.25	144	0	2240	704	2208	704	2240	704	800	256	2208	704	800	256
3.5	144	0	1792	672	1952	672	1792	672	640	224	1952	672	704	224
3.75	0	0	1376	640	1632	640	1376	640	512	224	1632	640	576	224
4.0	0	0	1024	608	1248	608	1024	608	384	224	1248	608	448	224
4.25	0	0	736	576	896	576	736	576	256	192	896	576	320	192
4.5	0	0	480	544	608	544	480	544	160	192	608	544	224	192
4.75	0	0	288	544	352	544	288	544	96	192	352	544	128	192
5.0	0	0	128	512	192	512	128	512	32	192	192	512	64	192

6. 新たな前提条件でのダブルスペクトラムの ADSL のスペクトル適合性について

本章及び次章では、総務省DSL作業班の結果に基づく新たな前提条件: 0.4 mm プラスティック絶縁ケーブル及び同一カッドを含む5回線の漏話妨害源でのスペクトル適合性の計算結果を示す。新たな前提条件による保護判定基準値としてはTable 3に示す値を仮に使用した。

Table 3: プラスティック絶縁ケーブルにおける5漏和妨害源での保護判定基準値

Length	ISI	DN	G.99	92.1	G.99	2.2	G. 9	92.1	Annex	C	G.9	92.2	Annex	C
[km]			Anno	ex A	Anne	ex A	DB	M	FB	M	DB	M	FB	M
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	144	144	7104	832	3008	832	7104	832	2624	288	3008	832	1088	288
0.75	144	144	6784	832	2944	832	6912	832	2624	288	2944	832	1088	288
1.0	144	144	5952	832	2624	832	6368	832	2624	288	2752	832	1088	288
1.25	144	144	4896	800	2272	800	5696	800	2624	288	2528	800	1088	288
1.5	144	144	3808	768	1824	768	5024	800	2624	288	2272	800	1088	288
1.75	144	144	2496	736	1440	736	4192	768	2624	288	2016	768	1088	288
2.0	144	144	1664	704	960	704	3680	736	2528	288	1696	736	1088	288
2.25	144	144	1088	640	640	640	3296	704	2464	288	1504	704	1088	288
2.5	144	144	704	576	320	576	3008	672	2368	288	1312	672	1088	288
2.75	144	144	480	512	160	512	2720	640	2208	288	1216	640	1088	288
3.0	144	144	320	448	96	448	2400	576	1984	288	1184	576	1056	288
3.25	144	144	224	352	64	352	2016	544	1696	256	1152	544	1056	256
3.5	144	144	128	288	32	288	1664	480	1408	256	1120	480	1024	256
3.75	144	0	64	256	32	256	1376	448	1152	256	1088	448	960	256
4.0	144	0	32	192	0	192	1120	416	928	256	1024	416	896	256
4.25	0	0	0	160	0	160	928	416	736	224	928	416	800	224
4.5	0	0	0	128	0	128	768	384	576	224	832	384	672	224
4.75	0	0	0	96	0	96	640	352	448	224	704	352	512	224
5.0	0	0	0	64	0	64	512	352	320	192	576	352	384	192

Table 4 は新たな前提条件でのダブルスペクトラムのスペクトル適合性計算結果を示す。Table 5 はダブルスペクトラムが妨害源となった場合の保護判定基準値との差を示す。

Table 4: 新たな前提条件でのダブルスペクトラムのスペクトル適合性

Length	IS	DN	G.99	92.1	G.99	92.2	G.	992.1	Annex	C C	G. 9	92.2 A	Annex	C
[km]			Anno	ex A	Ann	ex A	DB	BM	FB	M	DB	M	FB	M
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	144	144	7104	832	3008	832	7104	832	2624	288	3008	832	1088	288
0.75	144	144	7104	832	3008	832	7104	832	2624	288	3008	832	1088	288
1.0	144	144	6944	832	3008	832	6944	832	2560	288	3008	832	1088	288
1.25	144	144	6816	832	3008	832	6816	832	2528	288	3008	832	1088	288
1.5	144	144	6752	832	3008	832	6752	832	2496	288	3008	832	1088	288
1.75	144	144	6624	832	3008	832	6624	832	2432	288	3008	832	1088	288
2.0	144	144	6496	832	3008	832	6496	832	2400	288	3008	832	1088	288
2.25	144	144	6368	800	2976	800	6368	800	2336	288	2976	800	1088	288
2.5	144	144	6176	800	2976	800	6176	800	2272	288	2976	800	1088	288
2.75	144	144	5856	800	2944	800	5856	800	2144	288	2944	800	1088	288
3.0	144	144	5312	768	2912	768	5312	768	1952	288	2912	768	1056	288

3.25	144	144	4544	768	2880	768	4544	768	1664	256	2880	768	1056	256
3.5	144	144	3776	736	2784	736	3776	736	1376	256	2784	736	1024	256
3.75	144	0	3136	704	2656	704	3136	704	1152	256	2656	704	960	256
4.0	144	0	2560	672	2432	672	2560	672	928	256	2432	672	896	256
4.25	0	0	2048	640	2144	640	2048	640	736	224	2144	640	768	224
4.5	0	0	1600	640	1824	640	1600	640	576	224	1824	640	672	224
4.75	0	0	1216	608	1440	608	1216	608	448	224	1440	608	512	224
5.0	0	0	864	576	1056	576	864	576	320	192	1056	576	384	192

Table 5: ダブルスペクトラムが妨害源となった場合の保護判定基準値との差分

Length	ISI	DN	G.99	2.1	G.99	2.2	G. 9	992.1	Annex	C	G.9	92.2 A	nnex	C
[km]			Anne	ex A	Anne	ex A	DB	M	FB	M	DE	BM	FB	SM
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.75	0	0	320	0	64	0	192	0	0	0	64	0	0	0
1.0	0	0	992	0	384	0	576	0	-64	0	256	0	0	0
1.25	0	0	1920	32	736	32	1120	32	-96	0	480	32	0	0
1.5	0	0	2944	64	1184	64	1728	32	-128	0	736	32	0	0
1.75	0	0	4128	96	1568	96	2432	64	-192	0	992	64	0	0
2.0	0	0	4832	128	2048	128	2816	96	-128	0	1312	96	0	0
2.25	0	0	5280	160	2336	160	3072	96	-128	0	1472	96	0	0
2.5	0	0	5472	224	2656	224	3168	128	-96	0	1664	128	0	0
2.75	0	0	5376	288	2784	288	3136	160	-64	0	1728	160	0	0
3.0	0	0	4992	320	2816	320	2912	192	-32	0	1728	192	0	0
3.25	0	0	4320	416	2816	416	2528	224	-32	0	1728	224	0	0
3.5	0	0	3648	448	2752	448	2112	256	-32	0	1664	256	0	0
3.75	0	0	3072	448	2624	448	1760	256	0	0	1568	256	0	0
4.0	0	0	2528	480	2432	480	1440	256	0	0	1408	256	0	0
4.25	0	0	2048	480	2144	480	1120	224	0	0	1216	224	-32	0
4.5	0	0	1600	512	1824	512	832	256	0	0	992	256	0	0
4.75	0	0	1216	512	1440	512	576	256	0	0	736	256	0	0
5.0	0	0	864	512	1056	512	352	224	0	0	480	224	0	0

7. 新たな前提条件でのクアドスペクトラムの ADSL のスペクトル適合性について

本章におけるスペクトル適合性の計算は、総務省DSL作業班の結果に基づく新たな前提条件: 0.4 mm プラスティック絶縁ケーブル及び同一カッドを含む5回線の漏話妨害源による。

Table 6 は新たな前提条件でのクアドスペクトラムのスペクトル適合性計算結果を示す。 Table 7 にはクアドスペクトラムが妨害源となった場合の保護判定基準値との差を示す。

Table 6: 新たな前提条件でのクアドスペクトラムのスペクトル適合性

Length	IS	DN	G.99	92.1	G.99	92.2	G.	992.1	Annex	C	G. 9	92.2 A	Annex	C
[km]			Anno	Annex A		Annex A		DBM		\mathbf{M}	DBM		FB	M
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	144	144	7104	832	3008	832	7104	832	2624	288	3008	832	1088	288
0.75	144	144	7040	832	3008	832	7040	832	2592	288	3008	832	1088	288

							1							
1.0	144	144	6880	832	3008	832	6880	832	2528	288	3008	832	1088	288
1.25	144	144	6816	832	3008	832	6816	832	2496	288	3008	832	1088	288
1.5	144	144	6688	832	3008	832	6688	832	2464	288	3008	832	1088	288
1.75	144	144	6528	832	3008	832	6528	832	2400	288	3008	832	1088	288
2.0	144	144	6432	832	3008	832	6432	832	2368	288	3008	832	1088	288
2.25	144	144	6336	800	2976	800	6336	800	2336	288	2976	800	1088	288
2.5	144	144	6112	800	2976	800	6112	800	2240	288	2976	800	1088	288
2.75	144	144	5824	800	2944	800	5824	800	2144	288	2944	800	1088	288
3.0	144	144	5280	768	2912	768	5280	768	1952	288	2912	768	1056	288
3.25	144	144	4512	768	2880	768	4512	768	1664	256	2880	768	1056	256
3.5	144	144	3776	736	2784	736	3776	736	1376	256	2784	736	1024	256
3.75	144	0	3136	704	2656	704	3136	704	1152	256	2656	704	960	256
4.0	144	0	2560	672	2432	672	2560	672	928	256	2432	672	896	256
4.25	0	0	2048	640	2144	640	2048	640	736	224	2144	640	768	224
4.5	0	0	1600	640	1824	640	1600	640	576	224	1824	640	672	224
4.75	0	0	1216	608	1440	608	1216	608	448	224	1440	608	512	224
5.0	0	0	864	576	1056	576	864	576	320	192	1056	576	384	192

Table 7: クアドスペクトラムが妨害源となった場合の保護判定基準値との差分

Length	IS	DN	G.99	92.1	G.99	92.2	G.	992.1	Annex	C	G. 9	92.2 A	Annex	C
[km]			Ann	ex A	Ann	ex A	DB	SM	FB	M	DB	3M	FB	M
	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US	DS	US
0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.75	0	0	256	0	64	0	128	0	-32	0	64	0	0	0
1.0	0	0	928	0	384	0	512	0	-96	0	256	0	0	0
1.25	0	0	1920	32	736	32	1120	32	-128	0	480	32	0	0
1.5	0	0	2880	64	1184	64	1664	32	-160	0	736	32	0	0
1.75	0	0	4032	96	1568	96	2336	64	-224	0	992	64	0	0
2.0	0	0	4768	128	2048	128	2752	96	-160	0	1312	96	0	0
2.25	0	0	5248	160	2336	160	3040	96	-128	0	1472	96	0	0
2.5	0	0	5408	224	2656	224	3104	128	-128	0	1664	128	0	0
2.75	0	0	5344	288	2784	288	3104	160	-64	0	1728	160	0	0
3.0	0	0	4960	320	2816	320	2880	192	-32	0	1728	192	0	0
3.25	0	0	4288	416	2816	416	2496	224	-32	0	1728	224	0	0
3.5	0	0	3648	448	2752	448	2112	256	-32	0	1664	256	0	0
3.75	0	0	3072	448	2624	448	1760	256	0	0	1568	256	0	0
4.0	0	0	2528	480	2432	480	1440	256	0	0	1408	256	0	0
4.25	0	0	2048	480	2144	480	1120	224	0	0	1216	224	-32	0
4.5	0	0	1600	512	1824	512	832	256	0	0	992	256	0	0
4.75	0	0	1216	512	1440	512	576	256	0	0	736	256	0	0
5.0	0	0	864	512	1056	512	352	224	0	0	480	224	0	0

6. 結論

シングルスペクトラムのディスターバモデルでは、ローパスフィルターモデルにより、1.104MHz に近い高域の bin では数dB の減衰がある。ダブル及びクアドスペクトラムではローパスフィルターのコーナー周波数は高域にシフトされる(2.208 MHz 及び 3.75MHz)。この結果ダブル及びクアドスペクトラムの 1.104MHz 近傍における漏話は若干大き〈なる(Figure 1 参照)。このため下り FEXT 時の干渉が大き〈なり、FBM の下りのデータレートは近距離において基準値を若干下回る(FEXT は近距離での影響が大きい)。しかし基準値との差は大きなものではない。その影響は近距離のみであり、その他の距離では問題がな〈、FBM は適正な速度でのサービスを提供できる。また FBM は一般に長距離において使用され従って干渉は問題とはならない。さらに20dbm の下り送信電力の規制により、ダブル・クアドスペクトラムの下り送信 PSD は-40dbm/Hz以下でなければならず、近距離では送信電力のカットバックも適用される。したがって問題は無いと言える。

以上