

TS-M2M-0040v4.0.0

Modbus とのインタワーク

Modbus Interworking

2023 年 3 月 17 日制定

一般社団法人

情報通信技術委員会

THE TELECOMMUNICATION TECHNOLOGY COMMITTEE

本書は、一般社団法人情報通信技術委員会が著作権を保有しています。
内容の一部又は全部を一般社団法人情報通信技術委員会の許諾を得ることなく複製、

転載、改変、転用及びネットワーク上での送信、配布を行うことを禁止します。

 i

TS-M2M-0040v4.0.0

Modbus とのインタワーク [Modbus Interworking]

＜参考＞ [Remarks]

１．英文記述の適用レベル [Application level of English description]

 適用レベル [Application level]：E2

 本標準の本文、付属資料および付録の文章および図に英文記述を含んでいる。

[English description is included in the text and figures of main body, annexes and appendices.]

２．国際勧告等の関連 [Relationship with international recommendations and standards]

 本標準は、oneM2M で承認された Technical Specification TS-0040-V4.0.0 に準拠している。

[This standard is standardized based on the Technical Specification TS-0040-V4.0.0 approved by oneM2M.]

３．上記国際勧告等に対する追加項目等 [Departures from international recommendations]

 原標準に対する変更項目 [Changes to original standard]

 原標準が参照する標準のうち、TTC 標準に置き換える項目。[Standards referred to in the

 original standard, which are replaced by TTC standards.]

 原標準が参照する標準のうち、それらに準拠した TTC 標準等が制定されている場合は自動的に

最新版 TTC 標準等に置き換え参照するものとする。 [Standards referred to in the original standard

should be replaced by derived TTC standards.]

４．工業所有権 [IPR]

 本標準に関わる「工業所有権等の実施の権利に係る確認書」の提出状況は、ＴＴＣホームページによる。

[Status of “Confirmation of IPR Licensing Condition” submitted is provided in the TTC web site.]

５．作成専門委員会 [Working Group]

 oneM2M 専門委員会 [oneM2M Working Group]

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 1 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ONEM2M
TECHNICAL SPECIFICATION

Document Number TS-0040-V4.0.0

Document Name: Modbus Interworking

Date: 2022-09-29

Abstract: The present document specifies the oneM2M and Modbus interworking
technologies that enable Modbus devices and oneM2M entities
produce/consume services. This includes the interworking architecture model
that describes where the Modbus Interworking Proxy Entity (IPE) is hosted
and how the IPE is composed with. This document describes Modbus
services to oneM2M resource mapping structure and rules, followed by
describing detailed interworking procedures.

Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept
no liability for any use of this present document.

The present document has not been subject to any approval process by the oneM2M Partners Type 1.
Published oneM2M specifications and reports for implementation should be obtained via the oneM2M
Partners' Publications Offices.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 2 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the
need for a common M2M Service Layer that can be readily embedded within various
hardware and software, and relied upon to connect the myriad of devices in the field with
M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2022, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the
appropriate degree of experience to understand and interpret its contents in accordance with
generally accepted engineering or other professional standards and applicable regulations.
No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS
TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,
GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO
REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE
LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY
THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN
NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES
ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN
THIS DOCUMENT IS AT THE RISK OF THE USER.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 3 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents
1 Scope .. 4

2 References .. 4
2.1 Normative references ... 4
2.2 Informative references ... 4

3 Definition of terms, symbols and abbreviations ... 5
3.1 Terms ... 5
3.2 Symbols ... 5
3.3 Abbreviations ... 5

4 Conventions .. 5

5 Architecture Model .. 6
5.1 Reference model .. 6
5.2 Composition of the IPE .. 6

6 Architecture Aspects .. 7
6.1 Introduction.. 7
6.2 oneM2M resource mapping structure .. 7
6.2.1 Introduction .. 7
6.2.2 Mapping Modbus devices into SDT schemas .. 8
6.2.3 Mapping SDT schemas into oneM2M resources ... 8
6.3 Modbus IPE registration .. 9
6.4 Modbus service mapping ... 10
6.5 Modbus interworking procedures .. 11
6.5.1 Retrieve data from a Modbus device .. 11
6.5.2 Write data to a Modbus device ... 12

Annex A (informative): Introduction to Modbus .. 14

A.1 Background .. 14

A.2 Architecture and protocol stack .. 14

A.3 Key feature ... 16

A.4 Data model ... 17

Annex B (informative): Resource mapping examples ... 18

B.1 Introduction .. 18

B.2 Example for thermometer device ... 18
B.2.1 Example for Device model 'deviceThermometer' .. 18
B.2.2 Example for ModuleClass 'temperature' .. 19

History .. 20

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 4 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope
The present document specifies the oneM2M and Modbus interworking technologies that enable Modbus devices and
oneM2M entities produce/consume services.

Clause 5 defines the interworking architecture model that describes where the Modbus IPE is hosted and how the IPE is
composed with.

Clause 6 defines the architecture aspects that mainly describes Modbus services to oneM2M resource mapping structure
and rules. Furthermore, this explains the IPE registration and interworking procedures.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

The following referenced documents are necessary for the application of the present document.

[1] oneM2M TS-0001: "Functional Architecture".

[2] oneM2M TS-0004: "Service Layer Core Protocol".

[3] oneM2M TS-0023: "SDT based Information Model and Mapping for Vertical Industries".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[i.2] Modbus website.

NOTE: Available at http://www.modbus.org/.

[i.3] Modbus-Application-Protocol-V1-1b3, Modbus Organization.

[i.4] Modbus-Messaging-Implementation-Guide-V1-0b, Modbus Organization.

[i.5] Modbus-over-serial-line-V1-02, Modbus Organization.

[i.6] IETF RFC 4180: "Common Format and MIME Type for Comma-Separated Values (CSV) Files".

NOTE: Available at https://www.ietf.org/rfc/rfc4180.txt#page-1.

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://www.modbus.org/
https://www.ietf.org/rfc/rfc4180.txt#page-1

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 5 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

Modbus Master: software running on a computer or a server as a host to access Modbus Slaves by issuing unicast
requests

Modbus Slave/Device: peripheral device that provides a Modbus interface and responds by supplying the requested
data to the master, or by taking the action requested in the query

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AE Application Entity
CSE Common Services Entity
CSV Comma-Separated Values
IPE Interworking Proxy Entity
SDT Smart Device Template
ASN/MN Application Service Node/Middle Node
MN/IN Middle Node/Infrastructure Node
noDN Non-oneM2M Device Node
RTU Remote Terminal Unit
UDP User Datagram Protocol
PLC Programmable Logic Controller
I/O Input/Output
ASCII American Standard Code for Information Interchange
TCP Transmission Control Protocol
RTU/IP Remote Terminal Unit/Internet Protocol
IP Internet Protocol
MB Modbus
MBP Modbus Plus
HDLC High-level Data Link Control
ADU Application Data Unit
PDU Protocol Data Unit
RS Recommended Standard
MBAP Modbus Application Protocol
PC Personal Computer

4 Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be
interpreted as described in the oneM2M Drafting Rules [i.1].

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 6 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5 Architecture Model

5.1 Reference model
The architecture model followed in the present document is based on the architecture model in oneM2M TS-0001 [1]
that describes how interworking between oneM2M CSEs and non-oneM2M systems using specialized Interworking
Proxy application Entities (IPEs). The present document describes the Modbus IPE that supports the following
reference model.

Figure 5.1-1: Modbus interworking reference model

5.2 Composition of the IPE
As shown in Figure 5.2-1, the Modbus IPE consists of AE and Modbus Master [i.2]. To provide the interworking
functions to other oneM2M entities, the IPE shall register to a CSE and communicate with Modbus devices using
Modbus protocol. The IPE registration is mandatory in oneM2M systems. Modbus discovery and session establishment
are needed for the IPE to communicate with other Modbus applications. A single Modbus IPE may expose Modbus
functions provided by one or more Modbus devices to the oneM2M System.

Modbus device

CSE

Modbus Protocol

Modbus IPE

Mca

Mca

ASN/MN/IN

CSE
Mcc/Mcc’

MN/IN

AE

AE

Mca

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 7 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure 5.2-1: Composition of Modbus-IPE

6 Architecture Aspects

6.1 Introduction
The present document specifies the functions for Modbus interworking in the following aspects:

• oneM2M resource mapping structure;

• Modbus IPE registration;

• Modbus service mapping;

• Modbus interworking procedures.

6.2 oneM2M resource mapping structure

6.2.1 Introduction
In this clause, the overall resource mapping structure for exposing services between Modbus devices and oneM2M
entities is introduced. Firstly, Modbus devices are modelled according to the oneM2M SDT described in oneM2M
TS-0023 [3]. The oneM2M SDT offers a generic and flexible modeling structure for describing functionalities of
non-oneM2M devices including Modbus devices. After the SDT schemas of the Modbus devices are created, they are
mapped to oneM2M resources.

Resource instances representing
exposed Modbus functions

CSE hosting interworking functionality

Mca

Modbus-IPE

Create & manage
oneM2M resources &

exposed Modbus
functions

Initiate discovery &
execution of Modbus

functions

oneM2M AE

Modbus
device 1

Modbus
device 2

Modbus
device 3

Modbus device(s)

Modbus

Modbus
Master

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 8 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.2 Mapping Modbus devices into SDT schemas
Each Modbus device shall be modelled as a Device component. The Modules of the Device shall be created according
to the functionality of the Modbus device as defined in oneM2M TS-0023 [3].

For representing data objects of a Modbus device, the mapping between a Modbus device's registers [i.2], [i.3] and SDT
DataPoints is defined. Every Modbus register has the following properties: slave id, register type, address, length. The
information of these registers is typically provided by a manufacturer in a device's datasheet. Register type and length
are used to define the following SDT DataPoint attributes: DataType, writable, readable, and optional. The rules to
perform the mapping are shown in Table 6.2.2-1. A holding register and input register of length 2 can be mapped into
either xs:integer or xs:float DataType depending on data context. As an example mapping, a coil register can
be mapped to a DataPoint with DataType (xs:boolean), Readable (True), and Writable (True). The optional
attribute depends on a Modbus device and application logic and is supposed to be defined by the system integrator.

Table 6.2.2-1: Mapping between Modbus register types and SDT Data points
Modbus Register Mapping SDT Data points

Modbus register type Length DataType Readable Writable
Coil (1 bit, Read-Write) 1 (1 bit)  xs:boolean True True

Discrete Input (1 bit, Read-Only) 1 (1 bit) xs:boolean True False
Holding Register

(16-bit, Read-Write)
2

(4 bytes)
xs:integer / xs:float True True

Input Register
(16-bit, Read-Only)

2
(4 bytes)

xs:integer / xs:float True False

Holding Register
(16-bit, Read-Write)

1
(2 bytes)

xs:integer True True

Input Register
(16-bit, Read-Only)

1
(2 bytes)

xs:integer True False

Holding Register
(16-bit, Read-Write)

4
(8 bytes)

xs:double True True

Input Register
(16-bit, Read-Only)

4
(8 bytes)

xs:double True False

6.2.3 Mapping SDT schemas into oneM2M resources
The mapping of all SDT components follows the mapping procedure defined in clause 6.2 of oneM2M TS-0023 [3].
For example, the ModuleClass models shall be mapped to the specializations of <flexContainer> resource and their
DataPoints to customAttributes of the corresponding <flexContainer> specializations. However, the SDT schemas do
not consider interworking options with non-oneM2M Device Nodes (noDN) such as Modbus devices. For that reason, a
nodnProperties attribute shall be added as a customAttribute of a <flexContainer> resource specialization which is
mapped from an associated ModuleClass model.

The nodnProperties attribute stores one-to-one mappings in CSV string format [i.6] between each customAttribute of
<flexContainer> resource specialization and a Modbus register with which it is associated. Each line in the
nodnProperties shall contain the name of a customAttribute and associated Modbus register properties (slave id,
register type, address, length). The order they are aligned is the following: customAttribute name, slave id, register
type, address, length. The nodnProperties shall have one record per line and each property separated by a comma. The
header line for this CSV string is mandatory and shall contain the names corresponding to the fields in the string as
defined in the section 2.3 of the CSV format specification [i.6]. Table 6.2.3-1 shows the detailed information on the
fields of the nodnProperties attribute.

An example oneM2M resource schema including nodnProperties is provided in Annex B, Figure B.2.2-2.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 9 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.2.3-1: Fields of nodnProperties attribute

Field name Type Description
customAttribute name String Name of customAttribute
slave id Integer Slave id of Modbus device
register type Enumeration One of 4 register types (see Table 6.2.3-2)
address Integer Address of the first register associated with a variable
length Integer Number of registers an associated variable occupies

Table 6.2.3-2: Interpretation of register type
Value Interpretation

1 Coil
2 Discrete input
3 Holding register
4 Input register

6.3 Modbus IPE registration
Figure 6.3-1 shows the device registration call flow:

1) The IPE shall request to create an <AE> resource on the Hosting CSE to register the Modbus master
collocated on the IPE.

2) The Hosting CSE shall evaluate the request, performs the appropriate checks, and creates the <AE> resource.
The Hosting CSE shall respond with the successful result of <AE> resource creation, otherwise it responds
with an error.

3) Modbus devices are registered at Modbus IPE, in particular Modbus interworking information (slave id,
registers type, address, length) are defined in accordance with provided device datasheet.

4) Modbus IPE shall send corresponding requests to a CSE to create resources which were from SDT schemas as
described in clause 6.2.3. For all <flexContainer> resources, the containerDefinition attribute is mandatory.
The contentSize attribute is calculated by the Hosting CSE. The customAttributes of the <flexContainer>
resources should be specified if they are mandatory for that <flexContainer>. Each resource creation is
originated by the Modbus-IPE in a separate request for each resource.

5) After verifying the privileges and the given attributes, the Hosting CSE shall create each resource.

6) The Hosting CSE shall respond with the successful result for each created resource, otherwise it shall respond
with an error.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 10 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Modbus IPE Receiver
(Hosting CSE)

003: Create <AE> response

002: Create <AE>

001: Create <AE>

004: Create <flexContainer> for device

005: Create <flexContainer>

006: Create <flexContainer> response

007: Create <flexContainer> for module

For each SDT module

For each connected device

008: Create <flexContainer>

009: Create <flexContainer> response

Figure 6.3-1: Device registration call flow

6.4 Modbus service mapping
The Modbus devices can accept either read or write requests from the Master. The operation to be executed is identified
from the function code of a Modbus message. Therefore, the IPE needs to be able to map the oneM2M messages to
Modbus messages with the appropriate function code. The function code is identified from register type of the register
to be read for the read requests and from a tuple of register type and number of registers to be written (length) for the
write requests.

For the read requests, the IPE shall map the register type of the register to be read to the function code according to
Table 6.4-1. For the write requests, the IPE shall map the tuple of register type and the number of registers to be written
(length) to the function code according to Table 6.4-2. Both the register type and the length along with other Modbus
data needed to construct the Modbus message can be retrieved from the nodnProperties customAttribute of a
<flexContainer> specialization derived from a ModuleClass.

Table 6.4-1: Register type to function code mapping
for Modbus read request

Register type Function code
Coil 01
Discrete input 02
Holding register 03
Input register 04

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 11 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.4-2: Register type and length to function code mapping
for Modbus write request

Register type Length > 1 Function code
Coil false 05
Coil true 0F
Holding register false 06
Holding register true 10

6.5 Modbus interworking procedures

6.5.1 Retrieve data from a Modbus device
Suppose a scenario when current readings of a Modbus device need to be displayed at an AE application and Modbus-
IPE continuously monitors a Modbus device and uploads that data to a CSE hosted on a server in the network. Initially,
the AE shall be subscribed to the <flexContainer> resource, which is a specialization of some SDT module for a
Modbus device, using a <subscription> resource (notificationEventType A, see clause 9.6.8 in oneM2M TS-0001 [1]).
The following steps described in Figure 6.5.1-1 shall be performed for this scenario:

1) The Modbus IPE shall send a retrieve <flexContainer> request to the hosting CSE. This <flexContainer>
resource is a specialization of some Modbus module and contains nodnProperties attribute.

2) The Hosting CSE shall respond to the retrieve request with <flexContainer> data that includes nodnProperties.

3) The Modbus IPE shall use information stored in nodnProperties to compose Modbus read request. The
function code can be identified from a register type as in Table 6.4-1. Slave id, address and length should be
written in corresponding message fields. After the Modbus message is composed, the Modbus IPE sends this
message to Modbus device.

4) The Modbus device responds with requested data.

5) The Modbus IPE shall send an update <flexContainer> request (see clause 7.4.37.2.3 in oneM2M
TS-0004 [2]). The request body specifies the customAttributes to be updated and their new values read from
Modbus device.

6) After verifying the privileges and the given attributes, the hosting CSE shall update <flexContainer> resource.

7) The hosting CSE shall respond with updated <flexContainer> data after successful update to the Modbus IPE,
otherwise it responds with an error.

8) The hosting CSE shall send a notification for <flexContainer> resource update to the AE (see clause 7.5.1.2.2
in oneM2M TS-0004 [2]).

9) The AE sends a confirmation message about notification receiving to the hosting CSE (see clause 7.5.1.2.2 in
oneM2M TS-0004 [2]).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 12 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure 6.5.1-1: Modbus Slave Device monitoring call flow

6.5.2 Write data to a Modbus device
Suppose a scenario when it is required to update some value in a Modbus device through an AE application registered
to a CSE. Initially, the Modbus IPE shall be subscribed to the <flexContainer> resource, which is a specialization of
some SDT module for a Modbus device, using a blocking type of <subscription> resource (notificationEventType G,
see clause 9.6.8 in oneM2M TS-0001 [1]). The following steps described in Figure 6.5.2-1 shall be performed for this
scenario:

1) In order to write data to a Modbus device from the AE, the AE sends a request to update specified
customAttributes of the <flexContainer> resource which map to the Modbus Device (see clause 7.4.37.2.3 in
oneM2M TS-0004 [2]).

2) After verifying the privileges and the given attributes, the hosting CSE shall send a notification for the
received write request to the Modbus IPE (notification shall include nodnProperties) and temporarily blocks
the <flexContainer> resource for any UPDATE operations (see clause 7.5.1.2.2 in oneM2M TS-0004 [2]).

3) The Modbus IPE shall use information stored in nodnProperties to compose Modbus write request. The
function code to be used can be identified from a register type and length as in Table 6.4-2. Slave id, address,
and length should be written in corresponding message fields. After the Modbus message is composed the
Modbus IPE shall send this message to Modbus device.

4) The Modbus device responds with written data to the Modbus IPE.

5) The Modbus IPE shall respond to the hosting CSE with successful device update message, otherwise respond
with an error (see clause 7.5.1.2.2 in oneM2M TS-0004 [2]).

6) If the device was updated successfully, the hosting CSE shall update the <flexContainer> resource internally,
otherwise discard the changes. The resource is unlocked for UPDATE operations.

7) The hosting CSE shall respond to the AE with the result of the UPDATE request.

Modbus
IPE Hosting CSE

007: Update response

Originator
(CSE or AE)

006: Update <flexContainer>

008: Notification for the
<flexContainer> update

009: Notification response

Modbus
device

003: Read register(s)

004: Read response

001: Retrieve <flexContainer>

005: Update <flexContainer>

002: Retrieve response

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 13 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Modbus
IPE Hosting CSE

002: Notification for the
<flexContainer> update

Originator
(CSE or AE)

006: Update <flexContainer>

007: Update response

001: Update <flexContainer>

Modbus
device

003: Write data to the register

004: Write response

005: Notification response

Figure 6.5.2-1: Writing to a Modbus Slave Device call flow

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 14 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Annex A (informative):
Introduction to Modbus

A.1 Background
Modbus was first introduced by Modicon® (now part of Schneider Electric®) for process control systems. It is used to
establish master-slave/client-server communication between intelligent devices and sensors and instruments. It is a de
facto standard, truly open and the most widely used network protocol in the industrial manufacturing environment.

Modbus is easy to deploy and maintain and is used across a wide range of industries. It is also an ideal protocol for
Remote Terminal Unit (RTU) applications where wireless communication is required. Modbus is not only an industrial
protocol. Building, infrastructure, transportation and energy applications also make use of its benefits.

Originally, Modbus was implemented as an application level protocol intended to transfer data over serial port, it has
expanded to include implementations over serial, TCP/IP, and UDP. Today, it is a common protocol used by countless
devices for simple, reliable, and efficient communication across a variety of networks. Modbus was designed as a
request-response protocol with a flexible data and function model that are part of the reason it is still in use today. In
addition, support for the simple and elegant structure of Modbus continues to grow [i.4].

A.2 Architecture and protocol stack
The Modbus protocol follows a master and slave architecture where a master transmits a request to a slave and waits for
the response (as shown in Figure A.2-1). This architecture gives the master full control over the flow of information,
which has benefits on older multidrop serial networks. Even on modern TCP/IP networks, it gives the master a high
degree of control over slave behavior, which is helpful in some designs.

Figure A.2-1: The Master-Slave, Request-Response Relationship of Modbus device

The Modbus protocol allows an easy communication within all types of networks (as shown in Figure A.2-2). Every
type of devices (such as PLC, Driver, Motion control, I/O Device, etc.) can use Modbus protocol to initiate a remote
operation.

The same communication can be done as well on serial line as on an Ethernet TCP/IP network. Gateways allow a
communication between several types of buses or network using the Modbus protocol [i.5].

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 15 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Gateway

PLC

I/O

Device
HMI

Gateway

Device

I/O

Device I/O

Modbus on TCP/IP

M
odbus on R

S485

M
odbus on M

B+

Server Server

M
od

bu
s

co
m

m
un

ic
at

io
n

Figure A.2-2: Modbus Network Architecture

There are many variants of Modbus protocols:

• Modbus RTU - This is used in serial communication & makes use of a compact, binary representation of the
data for protocol communication. Modbus RTU is the most common implementation available for Modbus.
A Modbus RTU message is transmitted continuously without inter-character hesitations.

• Modbus ASCII - This is used in serial communication and makes use of ASCII characters for protocol
communication.

• Modbus TCP/IP or Modbus TCP - This is a Modbus variant used for communications over TCP/IP networks.
It does not require a checksum calculation as lower layers already provide checksum protection.

• Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP - This is a Modbus variant that differs from
Modbus TCP in that a checksum is included in the payload as with Modbus RTU.

• Modbus over UDP - Some have experimented with using Modbus over UDP on IP networks, which removes
the overheads required for TCP.

• Modbus Plus (Modbus+, MB+ or MBP) - Modbus Plus is proprietary to Schneider Electric® and unlike the
other variants, it supports peer-to-peer communications between multiple masters. It requires a dedicated co-
processor to handle fast HDLC-like token rotation. It uses twisted pair at 1 Mbit/s and includes transformer
isolation at each node, which makes it transition/edge triggered instead of voltage/level triggered.

At present, Modbus TCP is more efficient networking through the use of dedicated connections and identifiers for each
request and response. Modbus RTU and Modbus ASCII are older serial ADU formats with the primary difference
between the two being that RTU uses a compact binary representation while ASCII sends all requests as streams of
ASCII characters.

The Modbus protocol defines a simple Protocol Data Unit (PDU) independent of the underlying communication layers.
The mapping of Modbus protocol on specific buses or network can introduce some additional fields on the Application
Data Unit (ADU). The Modbus frame is as shown in Figure A.2-3.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 16 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure A.2-3: Modbus Frame

A Modbus frame or Modbus Application Data Unit (ADU) consists of the following:

• Additional address field: A field containing additional addresses used by the underlying communication
protocol. It is 1 byte slave address over serial links (such as RS 232, RS 485). For Modbus TCP, it is called
Modbus Application Protocol (MBAP) Header that include transaction identifier, protocol identifier, length
and unit identifier.

• Modbus PDU: It is independent of underlying communication layer and consists of two parts: 1) 1-byte
Function code to indicate identity of the requested service, 2) Variable length data field containing payload of
the requested service. There are three types of Modbus PDUs: Modbus Request, Modbus Response and
Modbus Exception.

• An optional error check field. Modbus TCP is not needed.

A.3 Key feature
There are many devices and gateways that support Modbus, as it is a very simple protocol and convenient to transmit
and understand. Specially, Modbus TCP/IP simply takes the Modbus instruction set and wraps TCP/IP around it.
Development costs are exceptionally low. Minimum hardware is required, and development is easy under any operating
system. The following are key features of Modbus:

• Communication mode

 Modbus uses master-slave/client-server communication mode, Master issues a unicast request and slave
responds to that. In serial and MB+ networks, only the node assigned as the Master may initiate a command.
On Ethernet, any device can send out a Modbus command, although usually only one master device does so.
Modbus also supports broadcast mode where master's request is sent to all the slaves but no slave responds to
broadcast request.

• Data model

 Modbus manages the access of data simply and flexibly. Modbus data are divided into four ranges, they are
that these types of data can be provided/alterable by I/O system or an application program. In most cases,
slaves store each type of data that it supports in separate memory, and limits the number of data elements that
a master can access.

• Function code

 There are three categories of Modbus Function codes, including Public Function codes, User-Defined Function
codes and Reserved Function codes. Public Function codes can satisfy common operations, such as accessing
data in device by reading and writing data model, and simply diagnosing device. Function code is flexibility
that user can select and implement a function code by self-defining User-Defined Function codes according to
service requirements.

• Availability of many devices

 Interoperability among different vendors' devices and compatibility with a large installed base of Modbus-
compatible devices makes Modbus an excellent choice.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 17 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

A.4 Data model
The Modbus standard defines bit-addressable and 16-bit word addressable input and output data items. Modbus bases
its data model on a series of tables that have distinguishing characteristics. The four primary tables for data model are as
following.

Table A.4-1: Modbus data model table

Primary tables Object type Type of access Comments
Discretes Input Single bit Read-Only This type of data can be provided by an

I/O system, e.g. read the status of switch
Coils Single bit Read-Write This type of data can be alterable by an

application program, e.g. switch on a
transducer

Input Registers 16-bit word Read-Only This type of data can be provided by an
I/O system, e.g. read temperature on a
sensor

Holding Registers 16-bit word Read-Write This type of data can be alterable by an
application, e.g. set value to a controller

There are two ways of organizing the data in device. Each device can have its own organization of the data according to
its application. Figure A.4-1 below shows an example for data organization in a device having digital and analog, inputs
and outputs. Data block (device application memory) is accessible with different Modbus functions, such as read coils,
write holding registers. All the data elements handled via Modbus can be located in device application memory by
reference numbers form 1to n. The pre-mapping between the Modbus data model and the device application is totally
vendor device specific.

Coils

Input
Registers

Holding
Registers

Discretes
Input

Separate or
overlapping

blocks of
memory

Device application
memory

Modbus Device

Modbus Request

Read Input

Read Coils

Read Registers

W rite Registers

Figure A.4-1: Implementation example of Modbus data model

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 18 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Annex B (informative):
Resource mapping examples

B.1 Introduction
The IPE constructs oneM2M resource tree on hosting CSE from the SDT schemas derived from the set of
functionalities of Modbus devices.

The present clause gives an example of how to use the oneM2M resource tree to represent a Modbus device
(i.e. Thermometer).

The next clause explains the creation process for an arbitrary thermometer device that communicates over Modbus. As
the Modbus devices are firstly represented by SDT models, the SDT definition of the thermometer device described in
clause 5.5.45 of oneM2M TS-0023 [3] will be considered.

B.2 Example for thermometer device

B.2.1 Example for Device model 'deviceThermometer'
Mapping of the SDT Device model to oneM2M resources is performed according to the general mapping procedure
described in clause 6.2.2 of oneM2M TS-0023 [3]. Figure B.2.1-1 shows an example of the [deviceThermometer],
which is modelled as a <flexContainer> resource specialization derived from the corresponding SDT Device
component.

Figure B.2.1-1: Structure of [deviceThermometer] resource

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 19 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

B.2.2 Example for ModuleClass 'temperature'
The SDT model of the 'temperature' ModuleClass is described in the clause 5.3.76 of oneM2M TS-0023 [3]. Assume
the DataPoints of the 'temperature' ModuleClass are created according to the mapping rule described in clause 6.2.2.

Mapping of the SDT ModuleClass model to oneM2M resources is performed according to the general mapping
procedure described in clause 6.2.3 of oneM2M TS-0023 [3]. The 'temperature' ModuleClass is mapped into
[temperature], a <flexContainer> resource specialization, and its data points are mapped into customAttributes of that
<flexContainer> resource specialization; and nodnProperties customAttribute is added the [temperature] as described
in clause 6.2.3. Figure B.2.2-1 shows the structure of [temperature].

The example contents of nodnProperties are shown on Figure B.2.2-2.

Figure B.2.2-1: Structure of [temperature] resource

Figure B.2.2-2: Example contents of noDNproperties

"currentTemperature",1,4,23,2
"targetTemperature",1,3,25,2
"unit",1,4,27,2
"minValue",1,4,29,2
"maxValue",1,4,31,2
"stepValue",1,4,33,2

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 20 of 20
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

History
Publication history

V0.0.1 February 2020 TS skeleton

V0.1.0 July 2020 Incorporate agreed contribution at SDS #46:

- SDS-2020-0210R02

V0.1.0 September 2022 Partners pre-processing done by editHelp!
e-mail: mailto:edithelp@etsi.org

mailto:edithelp@etsi.org

	TS-0040-Modbus_Interworking-V4_0_0.pdf
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Conventions
	5 Architecture Model
	5.1 Reference model
	5.2 Composition of the IPE

	6 Architecture Aspects
	6.1 Introduction
	6.2 oneM2M resource mapping structure
	6.2.1 Introduction
	6.2.2 Mapping Modbus devices into SDT schemas
	6.2.3 Mapping SDT schemas into oneM2M resources

	6.3 Modbus IPE registration
	6.4 Modbus service mapping
	6.5 Modbus interworking procedures
	6.5.1 Retrieve data from a Modbus device
	6.5.2 Write data to a Modbus device
	Annex A (informative): Introduction to Modbus

	A.1 Background
	A.2 Architecture and protocol stack
	A.3 Key feature
	A.4 Data model
	Annex B (informative): Resource mapping examples

	B.1 Introduction
	B.2 Example for thermometer device
	B.2.1 Example for Device model 'deviceThermometer'
	B.2.2 Example for ModuleClass 'temperature'

	History

	TS-M2M-0040v4.0.0rem.pdf
	Modbusとのインタワーク　[Modbus Interworking]
	１．英文記述の適用レベル [Application level of English description]
	２．国際勧告等の関連 [Relationship with international recommendations and standards]
	３．上記国際勧告等に対する追加項目等 [Departures from international recommendations]
	４．工業所有権 [IPR]
	５．作成専門委員会 [Working Group]

