
TS-M2M-0034v4.2.0

セマンティクスのサポート

Semantics Support

2023 年 3 月 17 日制定

一般社団法人

情報通信技術委員会

THE TELECOMMUNICATION TECHNOLOGY COMMITTEE

本書は、一般社団法人情報通信技術委員会が著作権を保有しています。
内容の一部又は全部を一般社団法人情報通信技術委員会の許諾を得ることなく複製、

転載、改変、転用及びネットワーク上での送信、配布を行うことを禁止します。

 i

TS-M2M-0034v4.2.0

セマンティクスのサポート [Semantics Support]

＜参考＞ [Remarks]

１．英文記述の適用レベル [Application level of English description]

 適用レベル [Application level]：E2

 本標準の本文、付属資料および付録の文章および図に英文記述を含んでいる。

[English description is included in the text and figures of main body, annexes and appendices.]

２．国際勧告等の関連 [Relationship with international recommendations and standards]

 本標準は、oneM2Mで承認された Technical Specification TS-0034-V4.2.0に準拠している。

[This standard is standardized based on the Technical Specification TS-0034-V4.2.0 approved by oneM2M.]

３．上記国際勧告等に対する追加項目等 [Departures from international recommendations]

 原標準に対する変更項目 [Changes to original standard]

 原標準が参照する標準のうち、TTC標準に置き換える項目。[Standards referred to in the

 original standard, which are replaced by TTC standards.]

 原標準が参照する標準のうち、それらに準拠した TTC標準等が制定されている場合は自動的に

最新版 TTC標準等に置き換え参照するものとする。 [Standards referred to in the original standard

should be replaced by derived TTC standards.]

４．工業所有権 [IPR]

 本標準に関わる「工業所有権等の実施の権利に係る確認書」の提出状況は、ＴＴＣホームページによる。

[Status of “Confirmation of IPR Licensing Condition” submitted is provided in the TTC web site.]

５．作成専門委員会 [Working Group]

 oneM2M専門委員会 [oneM2M Working Group]

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 1 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ONEM2M
TECHNICAL SPECIFICATION

Document Number TS-0034-V4.2.0

Document Name: Semantics Support

Date: 2020-01-08

Abstract: This specification provides normative text for semantic enablement in
oneM2M

Template Version: January 2017 (Do not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no
liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type 1.
Published oneM2M specifications and reports for implementation should be obtained via the oneM2M
Partners' Publications Offices.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 2 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the
need for a common M2M Service Layer that can be readily embedded within various
hardware and software, and relied upon to connect the myriad of devices in the field with
M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2019, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSTDI, TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the
appropriate degree of experience to understand and interpret its contents in accordance with
generally accepted engineering or other professional standards and applicable regulations.
No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS
TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,
GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO
REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE
LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY
THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN
NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES
ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN
THIS DOCUMENT IS AT THE RISK OF THE USER.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 3 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents
1 Scope .. 5

2 References .. 5
2.1 Normative references ... 5
2.2 Informative references ... 5

3 Abbreviations ... 5

4 Conventions .. 6

5 Architectural Model and Concepts ... 6

6 Basic Resource Procedures .. 6
6.1 <semanticDescriptor> Operations ... 6
6.1.1 Introduction .. 6
6.1.2 Create <semanticDescriptor> .. 6
6.1.3 Retrieve <semanticDescriptor> ... 7
6.1.4 Update <semanticDescriptor> ... 8
6.1.5 Delete <semanticDescriptor> .. 8
6.2 <semanticFanOutPoint> Operations .. 9
6.2.1 Introduction .. 9
6.2.2 Retrieve <semanticFanOutPoint> .. 9
6.3 <semanticMashupJobProfile> Operations .. 10
6.3.1 Introduction .. 10
6.3.2 Create <semanticMashupJobProfile> .. 10
6.3.3 Retrieve <semanticMashupJobProfile> ... 11
6.3.4 Update <semanticMashupJobProfile> ... 11
6.3.5 Delete <semanticMashupJobProfile> .. 12
6.4 <semanticMashupInstance> Operations ... 12
6.4.1 Introduction .. 12
6.4.2 Create <semanticMashupInstance> .. 13
6.4.3 Retrieve <semanticMashupInstance> .. 14
6.4.4 Update <semanticMashupInstance> .. 15
6.4.5 Delete <semanticMashupInstance> .. 15
6.5 <mashup> Operations ... 16
6.5.1 Introduction .. 16
6.5.2 Retrieve <mashup> ... 16
6.6 <semanticMashupResult> Operations ... 17
6.6.1 Introduction .. 17
6.6.2 Retrieve <semanticMashupResult> .. 18
6.6.3 Delete <semanticMashupResult> ... 18
6.7 <ontologyRepository> Operations .. 18
6.7.1 Introduction .. 18
6.7.2 Create <ontologyRepository> .. 19
6.7.3 Retrieve <ontologyRepository> ... 19
6.7.4 Update <ontologyRepository> ... 20
6.7.5 Delete <ontologyRepository> .. 20
6.8 <ontology> Operations ... 20
6.8.1 Introduction .. 20
6.8.2 Create <ontology> ... 21
6.8.3 Retrieve <ontology> .. 21
6.8.4 Update <ontology> .. 22
6.8.5 Delete <ontology> ... 22
6.8.6 Semantic query on <ontology> resource via Retrieve ... 23
6.9 <semanticValidation> Operations... 24
6.9.1 Introduction .. 24
6.9.2 Create <semanticValidation> ... 24
6.9.3 Retrieve <semanticValidation> .. 24
6.9.4 Update <semanticValidation> .. 25

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 4 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.9.5 Delete <semanticValidation> ... 25

7 Functional Descriptions.. 37
7.1 Overview ... 37
7.2 Access Control ... 37
7.2.1 Direct ACP control via semantic graph store ... 37
7.2.1.1 Introduction .. 37
7.2.1.2 Create SD relationship triples ... 38
7.2.1.3 Create ACP triples and ACP binding triples .. 40
7.2.1.3.1 Access Control Ontology .. 40
7.2.1.3.2 Example of Using Access Control Ontology .. 41
7.2.1.4 Conduct semantic operations with direct ACP control ... 42
7.2.1.5 Synchronization ACP triples and SD-related triples in the SGS with the resource tree 44
7.2.1.5.1 Introduction ... 44
7.2.1.5.2 Procedure for creating ACP triples when a new <accessControlPolicy> resource is created 45
7.2.1.5.3 Procedure for updating ACP triples when an existing <accessControlPolicy> resource is

updated .. 46
7.2.1.5.4 Procedure for deleting ACP triples when an existing <accessControlPolicy> resource is

deleted ... 47
7.2.1.5.5 Procedure for creating ACP-SD binding triples and SD relationship triples in SGS 48
7.2.1.5.6 Procedure for updating ACP-SD binding triples in SGS .. 50
7.2.1.5.7 Procedure for updating SD relationship triples in SGS ... 51
7.2.1.5.8 Procedure for deleting SD relationship triples and ACP-SD binding triples in SGS 52
7.3 Semantics Annotation .. 54
7.4 Semantic Filtering and Discovery .. 54
7.4.1 Introduction .. 54
7.4.2 Annotation-based semantic discovery method ... 55
7.4.3 Resource link-based method .. 55
7.5 Semantic Queries and Query Scope ... 56
7.6 Semantics Reasoning .. エラー! ブックマークが定義されていません。
7.7 Semantics Mashup ... 58
7.7.1 Introduction .. 58
7.7.2 Semantic Mashup Function (SMF) Description ... 59
7.7.2.1 Introduction .. 59
7.7.2.2 High-level architecture ... 59
7.7.2.3 High-level operations ... 60
7.8 Semantics-based Data Analytics .. 62
7.9 Ontology Management .. 62
7.10 Semantic Validation ... 63
7.10.1 Introduction .. 63
7.10.2 Semantic validation independent of <semanticDescriptor> resource operation .. 63
7.10.3 Semantic validation triggered when Create or Update a <semanticDescriptor> resource 64
7.10.4 Aspects to be checked in semantic validation .. 65

History .. 72

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 5 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope
The present document specifies several semantic functions for oneM2M functional architecture [1] including basic
resource procedures and functional descriptions.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

The following referenced documents are necessary for the application of the present document.

[1] oneM2M TS-0001: "Functional Architecture".

[2] W3C Recommendation: "SPARQL 1.1 Query Language".

[3] oneM2M TS-0004: "Service Layer Core Protocol Specification".

[4] W3C Recommendation 25 February 2014: "RDF 1.1 Concepts and Abstract Syntax".

[5] oneM2M TS-0012: "Base Ontology"

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] W3C Editor's Draft: "Semantic Sensor Network Ontology".

NOTE: Available at http://w3c.github.io/sdw/ssn/.

[i.2] ETSI TS 103 264 (V1.1.1): "SmartM2M; Smart Appliances; Reference Ontology and oneM2M
Mapping".

[i.3] oneM2M TR-0033: "Study on Enhanced Semantic Enablement".

[i.4] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ACP Access Control Policy
ACR Access Control Rule
AE Application Entity
CRUD Create, Retrieve, Update, Delete
CSE Common Service Entity
CSF Common Service Function

http://w3c.github.io/sdw/ssn/
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 6 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

IoT Internet of Things
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
MR Mashup Requestor
RDF Resource Description Framework
RH Resource Host
SAREF Smart Appliances REFerence ontology
SD Semantic Descriptor
SEM Semantics
SGS Semantic Graph Store
SMF Semantic Mashup Function
SMI Semantic Mashup Instance
SMJP Semantic Mashup Job Profile
SPARQL SPARQL Protocol and RDF Query Language
SSN Semantic Sensor Network
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language

4 Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in this document are to be interpreted as
described in the oneM2M Drafting Rules [i.4].

5 Architectural Model and Concepts
The architectural model assumed in this specification is based on the generic oneM2M architecture for the Common
Service Layer specified in oneM2M TS-0001 [1]. The core functionality supporting semantics resides at various CSEs,
providing services to the AEs via the Mca reference point and interacting with other CSEs via the Mcc reference point.

The Semantics (SEM) CSF (see clause 6.2.14 in oneM2M TS-0001 [1]) is an oneM2M Common Service Function
(CSF) which enables semantic information management and provides the related functionality based on this semantic
information. The functionality of this CSF is based on semantic descriptions and implemented through the specialized
resources and procedures described in this specification. This functionality is also enabled by other, more generic,
resources and procedures described in oneM2M TS-0001 [1] and further referenced in this specification. The main
features of the SEM CSF are listed in clause 10.2.14 of [1] and further detailed in clauses 6 and 7 of this specification.
The SEM CSF includes specialized functional blocks such as: SPARQL engine, repositories for ontologies and
semantic descriptions, which may be implemented via permanent or temporary Semantic Graph Stores, etc.

6 Basic Resource Procedures

6.1 <semanticDescriptor> Operations

6.1.1 Introduction
The <semanticDescriptor> resource is used to store a semantic description pertaining to a resource and potentially sub-
resources. Such a description may be provided according to ontologies. The semantic information is used by the
semantic functionalities of the oneM2M system and is also available to applications or CSEs. For resource type
description see [1] clause 9.6.30.

6.1.2 Create <semanticDescriptor>
This procedure shall be used for creating a <semanticDescriptor > resource.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 7 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.1.2-1: <semanticDescriptor> CREATE

<semanticDescriptor> CREATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in oneM2M TS-0001 [1] table 8.1.2-2 apply with the specific
details for:
Content: The resource content shall provide the information as defined in
clause 9.6.30 in oneM2M TS-0001 [1]

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 [1]

Processing at Receiver The Hosting CSE shall follow the basic procedure according to clause 10.1.2 of [1],
with the following specific details:

• shall check that the descriptor attribute conforms to the syntax as defined in
the descriptorRepresentation attribute.

• shall trigger the semantic validation process as specified in clause 7.10 if the
validationEnable attribute of the <semanticDescriptor> resource is set to
true, and shall set the semanticValidated attribute of <semanticDescriptor>
resource according to the validation result.

Information in Response
message According to clause 10.1.2 in oneM2M TS-0001 [1]

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1]

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1]

6.1.3 Retrieve <semanticDescriptor>
This procedure shall be used for retrieving the attributes of a <semanticDescriptor> resource.

Table 6.1.3-1: <semanticDescriptor> RETRIEVE

<semanticDescriptor > RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in oneM2M TS-0001 [1] table 8.1.2-2.

Processing at Originator
before sending Request According to clause 10.1.3. in oneM2M TS-0001 [1]

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 [1].
Information in Response
message All parameters defined in oneM2M TS-0001 [1] table 8.1.3-1 apply.

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 8 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.1.4 Update <semanticDescriptor>
This procedure shall be used for updating attributes of a <semanticDescriptor > resource.

Table 6.1.4-1: <semanticDescriptor> UPDATE

<semanticDescriptor> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in oneM2M TS-0001 [1] table 8.1.2-2 apply with the specific
details for:
the Content request parameter which may contain the new descriptor information in
one of the following ways:

1) full representation of the descriptor attribute; or
2) partial representation of the descriptor attribute as described in SPARQL

statements [2] in the semanticOpExec attribute.
Processing at Originator
before sending Request According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Receiver The hosting CSE shall follow the basic procedure according to clause 10.1.4 in
oneM2M TS-0001 [1], with the following specific details:
• check if both semanticOpExec attribute and ontologyContent attribute exist in

the the Content request parameter, if so, return an error code;
• shall update the descriptor attribute according to the execution result of the

SPARQL statements [2] in the semanticOpExec attribute, if it presents in the
Content request parameter;

• shall check that the descriptor attribute conforms to the syntax as defined in the
descriptorRepresentation attribute, if it presents in the Content request
parameter.

• shall trigger the semantic validation process as specified in clause 7.10 if the
validationEnable attribute of the <semanticDescriptor> resource is set to true,
and shall update the semanticValidated attribute of <semanticDescriptor>
resource according to the validation result.

Information in Response
message According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 [1].

6.1.5 Delete <semanticDescriptor>
This procedure shall be used for deleting a <semanticDescriptor> resource.

Table 6.1.5-1: <semanticDescriptor> DELETE

<semanticDescriptor> DELETE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply

Processing at Originator
before sending Request According to clause 10.1.5 in oneM2M TS-0001 [1]

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001 [1]
Information in Response
message According to clause 10.1.5 in oneM2M TS-0001 [1]

Processing at Originator
after receiving
Response

According to clause 10.1.5 in oneM2M TS-0001 [1]

Exceptions According to clause 10.1.5 in oneM2M TS-0001 [1]

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 9 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2 <semanticFanOutPoint> Operations

6.2.1 Introduction
The <semanticFanOutPoint> resource is a virtual resource because it does not have a representation. It is the child
resource of a <group> resource and shall be targeted only by RETRIEVE requests. When a request (for semantic
discovery or semantic query) is sent to the <semanticFanOutPoint> resource the host uses the memberIDs attribute of
the parent <group> resource to retrieve all the related descriptors, then proceeds with the corresponding processing.

See clause 9.6.14a in oneM2M TS-0001 [1] for a full description of the resource type. The use of
<semanticFanOutPoint> for semantic resource discovery and semantic query is further described in clause 7.4.

6.2.2 Retrieve <semanticFanOutPoint>
The RETRIVE operation on <semanticFanOutPoint> shall be used for two purposes:

1) performing semantic resource discovery; and

2) performing semantic query.

The procedure below shall be used for performing a semantic discovery or a semantic query procedure using the
descriptor content of all member semantic resources belonging to an existing <group> resource.

Table 6.2.2-1: <semanticFanOutPoint> RETRIEVE for Semantic Resource Discovery
and Semantic Query

<semanticFanOutPoint> RETRIEVE
Associated Reference Point Mca, Mcc and Mcc'
Information in Request
message

According to clause 10.1.3 in oneM2M TS-0001 [1].

For the semantic query case, the request message shall include the parameter
Semantic Query Indicator, which shall not be included in the request for semantic
resource discovery.

Processing at Originator
before sending Request

For the semantic resource discovery case, the Originator shall request a semantic
discovery to be performed using the content of the semantic descriptors of all member
resources belonging to an existing <group> resource.

For the semantic query case, the Originator may discover various <group> resources
defining different explicit query scopes and select the one having the desired query
scope. Then, the Originator shall request a semantic query to be performed using the
semantic information of all member resources belonging to this <group> resource.

The Originator may be an AE or CSE.

Processing at Receiver The Receiver shall:
• Check if the Originator has RETRIEVE privilege in the <accessControlPolicy>

resource referenced by the membersAccessControlPolicyIDs in the parent
<group> resource. In the case membersAccessControlPolicyIDs is not
provided, the access control policy defined for the parent <group> resource
shall be used.

• Upon successful validation, obtain the URIs of all the member semantic
resources from the memberIDs attribute of the parent<group> resource.

• If there are semantic resources stored on different CSEs, individual RETRIEVE
requests are sent to each CSE for retrieving the descriptors, otherwise the
descriptor attributes are simply retrieved for all the semantic resources hosted
locally. All semantic descriptors are accessed based on the respective access
control policies.

• Once all of the related descriptor attributes have been retrieved, the SPARQL
request is being executed on the combined content.

Information in Response
message

The result of the SPARQL request executed on the content retrieved from the semantic
resources.

Processing at Originator after
receiving Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 10 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.3 <semanticMashupJobProfile> Operations

6.3.1 Introduction
The <semanticMashupJobProfile> resource represents a Semantic Mashup Job Profile (SMJP). The
<semanticMashupJobProfile> resource type description is specified in the clause 9.6.53 in oneM2M TS-0001 [1].

A <semanticMashupJobProfile> resource can be provisioned to a Hosting CSE which provides semantic mashup
function; alternatively, an AE or CSE can request to create <semanticMashupJobProfile> resource at the Hosting CSE.
Once a <semanticMashupJobProfile> resource is provisioned or created at the Hosting CSE, other oneM2M CSEs/AEs,
which act as Mashup Requestors, can discover, retrieve, update, or delete it based on the requirements.

Figure 6.3.1-1 illustrates a generic procedure (e.g. Create/Retrieve/Update/Delete) to operate on a
<semanticMashupJobProfile> resource.

Receiver
(a CSE)

Originator
(a CSE or AE)

1. Processing at Originator
before sending Request

2. Request Message
(e.g. Create/Retrieve/Update/Delete

<semanticMashupJobProfile>)

3. Processing at Receiver

4. Response Message

Figure 6.3.1-1: Procedures for operating a <semanticMashupJobProfile> resource

6.3.2 Create <semanticMashupJobProfile>
This procedure shall be used for creating a <semanticMashupJobProfile> resource as described in Table 6.3.2-1.

Table 6.3.2-1: <semanticMashupJobProfile> CREATE

<semanticMashupJobProfile> CREATE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: The resource content shall provide the information about an
<semanticMashupJobProfile> resource (e.g. attribute values) as described in the
clause 9.6.53 in oneM2M TS-0001 [1].

Processing at Originator
before sending Request According to clause 10.1.1.1 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.1.1 in oneM2M TS-0001 [1].
Information in Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: Address of the created <semanticMashupJobProfile> resource, according to
clause 10.1.1.1 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.1.1 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.1.1 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 11 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.3.3 Retrieve <semanticMashupJobProfile>
This procedure shall be used for retrieving the attributes of a <semanticMashupJobProfile> resource as described in
Table 6.3.3-1.

Table 6.3.3-1: <semanticMashupJobProfile> RETRIEVE

<semanticMashupJobProfile> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: void.

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Receiver The Receiver shall verify the existence (including Filter Criteria checking, if it is given)
of the target resource or the attribute and check if the Originator has appropriate
privileges to retrieve information stored in the resource/attribute. Otherwise
clause 10.1.2 in oneM2M TS-0001 [1] applies.

Information in Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: attributes of the <semanticMashupJobProfile> resource as defined in the
clause 9.6.53 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].
In addition, a timer has expired. The Receiver responds with an error.

6.3.4 Update <semanticMashupJobProfile>
This procedure as described in Table 6.3.4-1 shall be used to update an existing <semanticMashupJobProfile>
resource, e.g. an update to its inputDescriptor attribute.

Table 6.3.4-1: <semanticMashupJobProfile> UPDATE

<semanticMashupJobProfile> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: attributes of the <semanticMashupJobProfile> resource as defined in the
clause 9.6.53 in oneM2M TS-0001 [1] to be updated.

Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 [1].
Information in Response
message According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 12 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.3.5 Delete <semanticMashupJobProfile>
This procedure as described in Table 6.3.5-1 shall be used to delete an existing <semanticMashupJobProfile> resource.

Table 6.3.5-1: <semanticMashupJobProfile> DELETE

<semanticMashupJobProfile> DELETE
Associated Reference Point Mca, Mcc and Mcc'.
Information in Request
message All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply.

Processing at Originator
before sending Request According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.4.1 in oneM2M TS-0001 [1]:
• If the <semanticMashupJobProfile> to be deleted has smiID attribute and the

smiID attribute has a value, the Receiver notifies each
<semanticMashupInstance> resource as included in the smiID attribute of the
removal of the <semanticMashupJobProfile> since those
<semanticMashupInstance> resources use this <semanticMashupJobProfile>.

• If the <semanticMashupJobProfile> to be deleted has
<semanticMashupInstance> child resources, all those
<semanticMashupInstance> child resources shall be removed accordingly.

Information in Response
message According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Processing at Originator
after receiving Response According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.4.1 in oneM2M TS-0001 [1].

6.4 <semanticMashupInstance> Operations

6.4.1 Introduction
<semanticMashupInstance> models and represents a Semantic Mashup Instance (SMI) resource.
<semanticMashupInstance> resource type is specified in the clause 9.6.54 in oneM2M TS-0001 [1].

A CSE/AE as a Mashup Requestor can request to create <semanticMashupInstance> resources at another oneM2M
CSE which implements the semantic mashup function. Each created <semanticMashupInstance> resource corresponds
to a semantic mashup job profile (i.e. a <semanticMashupJobProfile> resource); in other words, how the
<semanticMashupInstance> resource should execute the mashup operation to calculate the mashup result is specified in
the corresponding <semanticMashupJobProfile> resource. Note that the <semanticMashupInstance> and its
corresponding <semanticMashupJobProfile> resources may be placed at the same CSE or at different CSEs, and the
smjpID attribute of the <semanticMashupInstance> allows locating the corresponding <semanticMashupJobProfile>
resource. If the <semanticMashupInstance> resource has a <semanticMashupResult> as its child resource, the Mashup
Requestor may use it to retrieve the mashup result.

Figure 6.4.1-1 illustrates the procedural flow to operate a <semanticMashupInstance> resource
(e.g. Create/Retrieve/Update/Delete a <semanticMashupInstance> resource).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 13 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Receiver
(a CSE)

Originator
(a CSE or AE)

1. Processing at Originator
before sending Request

2. Request Message
(e.g. Create/Retrieve/Update/Delete

<semanticMashupInstance>)

3. Processing at Receiver

4. Response Message

Figure 6.4.1-1: Procedures for Operating a <semanticMashupInstance> Resource

6.4.2 Create <semanticMashupInstance>
This procedure shall be used for creating a <semanticMashupInstance> resource as described in Table 6.4.2-1.

Table 6.4.2-1: <semanticMashupInstance> CREATE

<semanticMashupInstance> CREATE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: The resource content shall provide the information about a
<semanticMashupInstance> resource (e.g. attribute values) as described in the
clause 9.6.54 in oneM2M TS-0001 [1].

Processing at Originator
before sending Request

According to clause 10.1.1.1 in oneM2M TS-0001 [1]:
• If the Originator knows the identifier or URI of each mashup member, it can

include the value of mashupMember in the Request message.
Processing at Receiver According to clause 10.1.1.1 in oneM2M TS-0001 [1]:

• The Receiver shall first check if the corresponding
<semanticMashupJobProfile> as denoted by smjpID attribute exists or not. If it
does not exist, the Receiver shall not create the <semanticMashupInstance>
and shall report an error (e.g. "<semanticMashupJobProfile> does not exist") in
the Response message to the Originator. If it exists, the Receiver shall retrieve
its content.

• The Receiver shall check if smjpInputParameter included in the Request
message meets the input parameter requirement as specified by the
inputDescriptor attribute of corresponding <semanticMashupJobProfile>. If it
does not meet the requirement, the Receiver shall not create the
<semanticMashupInstance> and shall report an error (e.g.
"smjpInputParameter" does not meet the requirement") in the Response
message to the Originator.

• According to the memberFilter attribute of the retrieved
<semanticMashupJobProfile>, the Receiver extracts the SPARQL query
contained in memberFilter and use it to discover and determine mashup
member resources for the <semanticMashupInstance> to be created.

• Dependent on the memberStoreType attribute contained in the Request
message, the Receiver maintains each member resource in different ways. If
memberStoreType="URI Only", the Receiver creates the mashupMember
attribute containing the URIs of the determined member resources. If
memberStoreType="URI and Value", the Receiver creates the mashupMember
attribute, retrieves the content value of each member resource and then stores
both the identifier and the content value of each member resource in the
mashupMember attribute.

• Depending on the resultGenType attribute contained in the Request message,

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 14 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

<semanticMashupInstance> CREATE
the Receiver prepares to execute the corresponding semantic mashup job
profile as follows:
− If resultGenType=" When SMI Is Created", the Receiver retrieves the

content value of each member resource if not retrieved yet; then it
executes mashup functions as specified by the
<semanticMashupJobProfile> and generates semantic mashup result,
which shall be stored in the <semanticMashupResult> child resource.

− If resultGenType="When A Mashup Requestor Requests", there is no
further processing at the Receiver.

− If resultGenType="Periodically", the Receiver shall set up a timer
according to the periodForResultGen attribute contained in the Request
message. When the timer expires, the Receiver shall retrieve the content
value of each member resource and re-generate the mashup result; then
it renews the timer.

− If resultGenType="When A Mashup Member Is Updated", there is no
further processing at the Receiver.

Information in Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: Address of the created <semanticMashupInstance> resource and address of
created <semanticMashupResult> resource if any, according to clause 10.1.1.1 in
oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.1.1 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.1.1 in oneM2M TS-0001 [1].

6.4.3 Retrieve <semanticMashupInstance>
This procedure shall be used for retrieving the attributes of a <semanticMashupInstance> resource as described in
Table 6.4.3-1.

Table 6.4.3-1: <semanticMashupInstance> RETRIEVE

<semanticMashupInstance> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: void.

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Receiver The Receiver shall verify the existence (including Filter Criteria checking, if it is given)
of the target resource or the attribute and check if the Originator has appropriate
privileges to retrieve information stored in the resource/attribute. Otherwise
clause 10.1.2 in oneM2M TS-0001 [1] applies.

Information in Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: attributes of the <semanticMashupInstance> resource as defined in the
clause 9.6.54 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 15 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.4.4 Update <semanticMashupInstance>
This procedure as described in Table 6.4.4-1 shall be used to update an existing <semanticMashupInstance>, e.g. an
update to its memberStoreType attribute.

Table 6.4.4-1: <semanticMashupInstance> UPDATE

<semanticMashupInstance> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: attributes of the <semanticMashupInstance> resource as defined the clause
9.6.54 in oneM2M TS-0001 [1] to be updated.

Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 [1]:
• If the updated attribute in the Request message is smjpInputParameter, the

Receiver shall recalculate the semantic mashup result using the new values of
input parameters.

• If the mashupMember attribute is updated (e.g. an existing mashup member is
not available anymore and a new mashup member is identified) and
resultGenType="When A Mashup Member Is Updated", the Hosting CSE shall
re-calculate the semantic mashup result using the new mashup members.

• If the updated attribute in the Request message is memberStoreType, the
Receiver needs to change the way to maintain mashup member resources. For
example, if memberStoreType is updated from "URI Only" to "URI and Value",
the Receiver needs to retrieve the content value of each mashup member
resource and store the values together with URI in mashupMember attribute. If
memberStoreType is updated from "URI and Value" to "URI Only", the
Receiver needs mashupMember attribute to only maintain the identifier of each
mashup member.

• If the updated attribute in the Request message is resultGenType, the Receiver
changes the way to calculate/generate the semantic mashup result
accordingly.

Information in Response
message According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

6.4.5 Delete <semanticMashupInstance>
This procedure as described in Table 6.4.5-1 shall be used to delete an existing <semanticMashupInstance>.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 16 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.4.5-1: <semanticMashupInstance> DELETE

<semanticMashupInstance> DELETE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply.

Processing at Originator
before sending Request According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.4.1 in oneM2M TS-0001 [1].
• In addition, The Receiver removes this <semanticMashupInstance> from the

smiID attribute of the corresponding <semanticMashupJobProfile>.
Information in Response
message According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.4.1 in oneM2M TS-0001 [1].

6.5 <mashup> Operations

6.5.1 Introduction
<mashup> is a virtual resource because it does not have a representation. It is the child resource of a
<semanticMashupInstance> resource. When a RETRIEVE operation is sent to the <mashup> resource, it triggers a
calculation and generation of the mashup result based on its parent resource <semanticMashupInstance>.

The <mashup> resource type is specified in oneM2M TS-0001 [1], clause 9.6.55.

Only Retrieve operation shall be allowed on a <mashup> virtual resource. A Create, an Update, or a Delete operation
on a <mashup> virtual resource shall not be supported.

6.5.2 Retrieve <mashup>
This procedure shall be used for triggering the CSE which hosts the <semanticMashupInstance> to recalculate mashup
results and returning the mashup result back to the requestor (e.g. an AE) of this retrieve request as described in
Table 6.5.2-1.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 17 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.5.2-1: <mashup> RETRIEVE

<mashup> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
To: <semanticMashupInstance>/<mashup>
Content: void.

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Receiver The Receiver shall check if the Originator has appropriate privileges. Otherwise
clause 10.1.2 in oneM2M TS-0001 [1] applies:

• The Hosting CSE triggers the recalculation of semantic mashup result for
<mashup>'s parent resource <semanticMashupInstance>. The recalculated
mashup result shall be stored in the <semanticMashupInstance>'s child
resource <semanticMashupResult>.

Information in Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: the mashup result, if indicated in the request.

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].
In addition: a timer has expired. The Receiver responds with an error.

6.6 <semanticMashupResult> Operations

6.6.1 Introduction
<semanticMashupResult> resource stores the mashup result. It is the child resource of a <semanticMashupInstance>
resource. A <semanticMashupResult> resource shall be automatically generated by a Hosting CSE when it executes a
semantic mashup operation on a <semanticMashupInstance> resource. The < semanticMashupResult > resource type
is specified in the clause 9.6.56 in oneM2M TS-0001 [1].

Figure 6.6.1-1 illustrates the procedure to operate a <semanticMashupResult> resource. A <semanticMashupResult>
resource shall be automatically created when a Hosting CSE executes semantic mashup operation on a
<semanticMashupInstance> resource. Only Retrieve and Delete operations shall be allowed on a
<semanticMashupResult> resource. Detail descriptions are given in following clauses.

Receiver Originator

1. Processing at Originator
before sending Request

2. Request Message
(e.g. Retrieve/Delete

<semanticMashupResult>)

3. Processing at Receiver

4. Response Message

Figure 6.6.1-1: Procedures for operating a <semanticMashupResult> Resource

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 18 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.6.2 Retrieve <semanticMashupResult>
This procedure shall be used for retrieving the attributes of a <semanticMashupResult> resource as described in
Table 6.6.2-1.

Table 6.6.2-1: <semanticMashupResult> RETRIEVE

<semanticMashupResult> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: void.

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Receiver The Receiver shall verify the existence (including Filter Criteria checking, if it is given)
of the target resource or the attribute and check if the Originator has appropriate
privileges to retrieve information stored in the resource/attribute. Otherwise
clause 10.1.2 in oneM2M TS-0001 [1] applies.

Information in Response
message

All parameters defined in Table 8.1.3-1 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: attributes of the <semanticMashupResult> resource as defined in the
clause 9.6.56 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].
In addition: a timer has expired. The Receiver responds with an error.

6.6.3 Delete <semanticMashupResult>
This procedure as described in Table 6.6.3-1 shall be used to delete an existing <semanticMashupResult> resource.

Table 6.6.3-1: <semanticMashupResult> DELETE

<semanticMashupResult> DELETE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in Table 8.1.2-3 in oneM2M TS-0001 [1] apply.

Processing at Originator
before sending Request According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.4.1 in oneM2M TS-0001 [1].
Information in Response
message According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4.1 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.4.1 in oneM2M TS-0001 [1].

6.7 <ontologyRepository> Operations

6.7.1 Introduction
The <ontologyRepository> represents an ontology repository which may contain any number of managed ontologies
represented as <ontology> child resources (see clause 6.8). The ontology repository may further provide semantic
validation function by the <semanticValidation> virtual child resource (see clause 6.9).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 19 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.7.2 Create <ontologyRepository>
This procedure shall be used for creating a <ontologyRepository> resource.

Table 6.7.2-1: <ontologyRepository> CREATE

<ontologyRepository> CREATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: The resource content shall provide the information as defined in the
clause 9.6.50 in oneM2M TS-0001 [1].

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.2 in oneM2M TS-0001 [1].
The hosting CSE shall also create the <semanticValidation> virtual child-resource if the
addressed <ontologyRepository>resource is successfully created.

Information in Response
message According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].

6.7.3 Retrieve <ontologyRepository>
This procedure shall be used for retrieving <ontologyRepository> resource.

Table 6.7.3-1: <ontologyRepository> RETRIEVE

<ontologyRepository> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1].

Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 [1].
Information in Response
message All parameters defined in table 8.1.3-1 in oneM2M TS-0001 [1] apply.

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 20 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.7.4 Update <ontologyRepository>
This procedure shall be used for updating an existing <ontologyRepository> resource.

Table 6.7.4-1: <ontologyRepository> UPDATE

<ontologyRepository> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1].

Processing at Originator
before sending Request According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.4 in oneM2M TS-0001 [1].
Information in Response
message According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 [1].

6.7.5 Delete <ontologyRepository>
This procedure shall be used for deleting an existing <ontologyRepository> resource.

Table 6.7.5-1: <ontologyRepository> DELETE

<ontologyRepository> DELETE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message All parameters defined in table 8.1.2-2 apply in oneM2M TS-0001 [1].

Processing at Originator
before sending Request According to clause 10.1.5 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001 [1].
The hosting CSE shall also delete the <semanticValidation> virtual child-resource if the
addressed <ontologyRepository>resource is successfully created.

Information in Response
message According to clause 10.1.5 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.5 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.5 in oneM2M TS-0001 [1].

6.8 <ontology> Operations

6.8.1 Introduction
Each <ontology> resource represents an ontology under management in the oneM2M system. It may contain the full
representation or the IRI reference of the managed ontology. It is managed by simple CRUD operations as ordinary
resource or by more advanced SPARQL operations (contained in the payload of the Update and Retrieve) at the
granularity of RDF-triple level.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 21 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.8.2 Create <ontology>
This procedure shall be used for deleting an existing <ontology> resource.

Table 6.8.2-1: <ontology> CREATE

<ontology> CREATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply with the specific
details for:
Content: The resource content shall provide the information as defined in
clause 9.6.51 in oneM2M TS-0001 [1].

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.2 in oneM2M TS-0001 [1] with the specific details as follows:
• The Hosting CSE shall check that the ontologyContent attribute conforms to the

syntax as defined in the ontologyFormat attribute.
Information in Response
message According to clause 10.1.2 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 [1].

6.8.3 Retrieve <ontology>
This procedure shall be used for deleting an existing <ontology> resource.

Table 6.8.3-1: <<ontology> RETRIEVE

<ontology> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1].

Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 [1].
Information in Response
message All parameters defined in table 8.1.3-1 in oneM2M TS-0001 [1] apply.

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 22 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.8.4 Update <ontology>
This procedure shall be used for deleting an existing <ontology> resource.

Table 6.8.4-1: <ontology> UPDATE

<ontology> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] shall apply with the
specific details for the Content request parameter which may contain the new ontology
information in one of the following ways:

1) the full representation of the new ontology triples in the ontologyContent
attribute; or

2) the new IRI of the ontology in the ontologyContent attribute; or
3) the partial representation of the new ontology as described in SPARQL

statements [2] in the semanticOpExec attribute in the case that the
ontologyFormat is not 'IRI'.

Processing at Originator
before sending Request According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.4 in oneM2M TS-0001 [1] with the specific details as follows:
• Check if both semanticOpExec attribute and ontologyContent attribute exist in

the the Content request parameter, if so, return an error code.
• In the case that the Content request parameter contains partial representation

of the new ontology as described in SPARQL statements [2] in the
semanticOpExec attribute, and the ontologyFormat is not set to 'IRI', the
Hosting CSE shall update the ontologyContent attribute according to the
execution result of the SPARQL statements [2].

• In the case that the Content request parameter contains the ontologyContent
attribute, the Hosting CSE shall check that the ontologyContent attribute
conforms to the syntax as defined in the ontologyFormat attribute.

Information in Response
message According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 [1].

6.8.5 Delete <ontology>

Table 6.8.5-1: <ontology> DELETE

<ontology> DELETE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply.

Processing at Originator
before sending Request According to clause 10.1.5 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001 [1].
Information in Response
message According to clause 10.1.5 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.5 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.5 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 23 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.8.6 Semantic query on <ontology> resource via Retrieve

Table 6.8.6-1: Semantic query on <ontology> resource via RETRIEVE

Semantic query on <ontology> resource via RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in table 8.1.2-2 in oneM2M TS-0001 [1] apply.
In addition, the semantic query request shall be issued as a RETRIEVE operation with:

1) A SPARQL query statement in the semanticsFilter condition tag of the Filter
Criteria request parameter.

2) A Result Content request parameter with the value set to 'semantic-
content'.

3) A Semantic Query Indicator request parameter with the value set to
'TRUE'.

See more details in clause 7.5.
Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 [1] with the following specific details:
The hosting CSE shall execute the SPARQL query statement against the content
attribute of the <ontology> resource and return the SPARQL result to the Originator. If
the content attribute contains IRI of an external ontology, the hosting CSE shall
retrieve the referenced ontology following the IRI and perform the SPARQL query
against it. If the content attribute contains the RDF triples, the SPARQL query can be
performed directly against it.

Information in Response
message According to clause 10.1.3 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 [1].

Semantic query defined in clause 7.5 shall be used for retrieving the semantic information (triples) from an <ontology>
resource.

Some SPARQL query statement examples are given as follows:

1) get all classes of an ontology:

- SELECT ?subject WHERE { ?subject rdfs:subClassOf+ owl:Thing }

2) get all object | data properties of ontology:

- SELECT ?subject WHERE { {?subject rdf:type+ owl:ObjectProperty } UNION {?subject rdf:type+
owl:DatatypeProperty } }

3) get direct subclasses of class A:

- SELECT ?subject WHERE { ?subject rdfs:subClassOf saref:Command }

4) get also transitive subclasses class A:

- e.g. if information from instances of class A is requested, all subclasses of class A also need to be
included as they are also instances of class A;

- SELECT ?subject WHERE { ?subject rdfs:subClassOf + saref:Command }

5) get all the superclasses of class A:

- e.g. if for derived ontologies the class of the base ontology needs to be found from which the class is
derived, for example to apply rules defined for the base ontology, e.g. for creating a resource structure;

- SELECT ?object WHERE { saref:SetAbsoluteLevelCommand rdfs:subClassOf + ?object }

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 24 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6) get all object | data properties where class A is in the domain:

- e.g. to find out what properties an instance of class A can possibly have;

- SELECT ?subject ?object WHERE { ?subject rdfs:domain saref:Service }

7) get all object | data properties where class A is in the range:

- SELECT ?subject ?object WHERE { ?subject rdfs:range saref:Command }

8) get all sub-properties of a property A:

- e.g. if information concerning property A is requested all sub-properties of A also need to be included;

- SELECT ?subject WHERE { ?subject rdfs:subPropertyOf om:singular_unit

9) get classes that are equivalent to class A:

- SELECT ?class WHERE {{ saref:Device owl:equivalentClass ?class} UNION {?class
owl:equivalentClass saref:Device}}

6.9 <semanticValidation> Operations

6.9.1 Introduction
The <semanticValidation> resource, as a virtual resource of <ontologyRepository> resource, is used for validating an
input <semanticDescriptor> resource sent from an authorized originator.

6.9.2 Create <semanticValidation>
The <semanticValidation> resource shall be created when the parent <ontologyRepository> resource is created by the
hosting CSE. The Create operation is not applicable via Mca, Mcc or Mcc'.

6.9.3 Retrieve <semanticValidation>
The Retrieve operation is not applicable for <semanticValidation>.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 25 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.9.4 Update <semanticValidation>
This procedure shall be used for validating a <semanticDescriptor> resource contained in the Update request against its
referenced ontology. The semantic validation process shall also take into account linked <semanticDescriptor>
resources (if any) of the <semanticDescriptor> resource in the request.

Table 6.9.4-1: <semanticValidation> UPDATE

<semanticValidation> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message

All parameters defined in table 8.1.2-3 in oneM2M TS-0001 [1]. Besides, the resource
representation in the Content parameter of the request message shall be set as the
<semanticDescriptor> resource to be validated.

Processing at Originator
before sending Request According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Receiver The Recevier shall follow the basic procedure according to clause 10.1.4 in oneM2M
TS-0001 [1], with the following specific details:

• retrieve the semantic description (i.e. the triples in descriptor attribute of), the
URI to the referenced ontology in ontologyRef attribute and potential links to
other linked <semanticDescriptor> resources from the <semanticDescriptor>
resource to be validated;

• retrieve the referenced ontology, any linked <semanticDescriptor> resources
and the referenced ontologies of the linked <semanticDescriptor> resources;

• perform semantic validation according to clause 7.10.
Information in Response
message According to clause 10.1.4 in oneM2M TS-0001 [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 [1].
 In case the Originator is the hosting CSE of the <semanticDescriptor> resource being
validated, the Originator shall update the semanticValidated attribute (true or false) of
the hosted <semanticDescriptor> resource according to the received response code
accordingly.

Exceptions According to clause 10.1.4 in oneM2M TS-0001 [1].

6.9.5 Delete <semanticValidation>
The <semanticValidation> resource shall be deleted when the parent <ontologyRepository> resource is deleted by the
hosting CSE. The Delete operation is not applicable via Mca, Mcc or Mcc'.

6.10 <ontologyMapping> Operations

6.10.1 Introduction
The ontology mapping task shall be performed by the Create or Update operation against an <ontologyMapping>
resource on a Hosting CSE. A Retrieve operation against the same <ontologyMapping> resource shall be used to get
the result of ontology mapping. A Delete operation against a <ontologyMapping> resource shall follow the basic
procedure as specified in clause [1].

6.10.2 Create <ontologyMapping> (Ontology Mapping)
This procedure shall be used for performing the ontology mapping task by creating a <ontologyMapping> resource as
described in Table 6.10.2-1. Detailed message flows are described in Figure 6.10.2-1.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 26 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.10.2-1: <ontologyMapping> CREATE

<ontologyMapping> CREATE
Associated Reference Point Mca, Mcc and Mcc'.
Information in Request
message

All parameters defined in [1] table 8.1.2-2 apply with the specific details for:
Content: The resource content shall provide the information about an
<ontologyMapping> resource (e.g. attribute values) as described in [1].

Processing at Originator
before sending Request According to clause 10.1.2 in [1].

Processing at Receiver The receiver shall follow the basic procedure according to clause 10.1.2 of [1], with the
following specific details:
 Determine the source <ontology> and target <ontology> resources to be mapped

according to the sourceOntology and targetOntology attributes provided in the
request;

 Determine the ontology mapping method according to the mapping method
description including the mappingPolicy and mappingAlgorithmLinks attributes
provided in the request;

 Retrieve the source <ontology> and target <ontology> resources from a remote
CSE if needed;

 Retrieve the <ontologyMappingAlgorithm> resources from a remote CSE if needed;
 Create the ontology mapping relationships between the source <ontology> and the

target <ontology>;
 Store the mapping result in the <ontologyMapping> resource in the successful case.

Information in Response
message

All parameters defined in table 8.1.3-1 in [1] shall apply with the specific details for:
Content: Address of the created <ontologyMapping> resource, according to
clause 10.1.2 in [1].

Processing at Originator after
receiving Response According to clause 10.1.2 in [1].

Exceptions According to clause 10.1.2 in [1].

Originator <ontologyMapping>
Hosting CSE

<ontology>
Hosting CSE

<ontologyMappingAlg
orithm> Hosting CSE

1. request ontology mapping by Creating
 a <ontologyMapping> resource

2. Determine source & target ontologies and ontology mapping methods

3.Retrieve source & target ontologies

4. Retrieve ontology mapping algorithms

5. Create mapping between the source & target ontologies,
 store the result in the <ontologyMapping> Resource

6. Return the successful response

Figure 6.10.2-1: The ontology mapping procedure by Create/Update a <ontologyMapping> resource

The normal message flow Create <ontologyMapping> procedure is described as follows:

1. The hosting CSE (e.g. an oneM2M platform) receives an ontology mapping request from an Originator (e.g. an
oneM2M application) in the form of a Create operation against an <ontologyMapping> resource. The request
shall contain the resourceIDs of the source and target <ontology> resources indicated by the sourceOntology
and targetOntology attributes in the <ontologyMapping> resource. It shall also contain the information of
mapping method description including the mapping policy and the mapping algorithms indicated by the
attributes of mappingPolicy and mappingAlgorithmLinks respectively.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 27 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

2. The hosting CSE shall determine the source and target ontologies according to the resourceIDs of the source and
target <ontology> resources provided in the request. It shall also determine the ontology mapping method
according to the information of mapping method description provided in the request. Specifically, the hosting
CSE shall first determine the mapping algorithm policy (single, multiple or traversal) according to the
mappingPolicy attribute provided in the request. Then it shall determine the mapping algorithm(s) to be used
according to the determined mapping algorithm policy and the available mapping algorithm(s) provided by the
mappingAlgorithmLinks attribute, and shall perform the ontology mapping process according to Table 6.10.2-2.

Table 6.10.2-2: ontology mapping process according to different mapping policies and the
provided mapping algorithms

mappingPolicy mappingAlgorithmLinks ontology mapping process by the hosting CSE
single

contains the resourceID(s) of one or more
existing <ontologyMappingAlgorithm>
resources, or the resourceID of an
existing
<ontologyMappingAlgorithmRepository>
resource.

Decide to use a single ontology mapping algorithm for
the ontology mapping between the source and target
ontologies.

If more than one <ontologyMappingAlgorithm>
resource is provided by the mappingAlgorithmLinks, or
contained in the referenced
<ontologyMappingAlgorithmRepository> resource, the
hosting CSE may decide to use one of the provided
algorithms according to its local policy.

multiple

contains the resourceIDs of two or more
existing <ontologyMappingAlgorithm>
resources of different types, or the
resourceID of an existing
<ontologyMappingAlgorithmRepository>
resource which contains two or more
<ontologyMappingAlgorithm> resources of
different types.

Decide to use two or more different types of mapping
algorithms (based on the algorithmType attribute of the
<ontologyMappingAlgorithm> resource) for the
ontology mapping between the source and target
ontologies.

The hosting CSE may decide to use a subset (at least
two types) of the provided algorithms according to its
local policy.

If the number of the types of the provided algorithms is
less than two, the hosting CSE shall reject the request
with an error.

traversal contains the resourceID(s) of one or more
existing <ontologyMappingAlgorithm>
resources, or the resourceID of an
existing
<ontologyMappingAlgorithmRepository>
resource.

Decide to use all the provided ontology mapping
algorithms in a traversal way for the ontology mapping
between the source and target ontologies.

Note1: Any combination of mappingPolicy and mappingAlgorithmLinks not covered by this table shall be considered
as an exceptional case, and the hosting CSE shall reject the request with an error.
Note2: For a pre-configured algorithm already stored in the system, the <ontologyMappingAlgorithm> resource may
not contain the executable of the algorithm. In this case, the hosting CSE may invoke the algorithm from the system
locally according to the resourceName or resourceID attribute.
Note3: If more than one algorithms are used, the final ontology mapping result shall be a union of all the results from
each algorithm.

3. The hosting CSE may need to retrieve the source and/or target <ontology> resources from a remote CSE the
sourceOntology and targetOntology attributes if they are not hosted locally.

4. The hosting CSE may need to retrieve the used <mappingAlgorithm> resources from a remote CSE according to
the mappingAlgorithmLinks attribute if they are not hosted locally.

5. The hosting CSE shall create the ontology mapping relationships between the source and target ontologies
according to the determined mapping method, and shall store the resulted mapping relationships in the
<ontologyMapping> resource.

Figure 6.10.2-2 shows an example of the ontology mapping between the source ontology (Ontology-A) and the target
ontology (Ontology-B). Assuming the mappingPolicy=multiple and the mappingAlgorithmLinks points to two
<ontologyMappingAlgorithm> resources which are a “linguistic-feature extraction algorithm” and an “external
resource acquisition algorithm” respectively. The hosting CSE first performs the “linguistic-feature extraction
algorithm” against Ontology-A and Ontology-B, and generates three mapping relationships (as formatted by

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 28 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Triple#1, Triple#2 and Triple#3 below). The hosting CSE then performs the “external resource acquisition
algorithm” with the support from external resources (e.g. the WordNet dictionary), and generates a fourth mapping
relationship (as Triple#4 below).

• RDF Triple #1: Ontology-A:Thing owl:equivalentClass Ontology-B:Thing
• RDF Triple #2: Ontology-A:Devices owl:equivalentClass Ontology-B:Device
• RDF Triple #3: Ontology-A:LightSensor owl:equivalentClass Ontology-B:Light_Sensor
• RDF Triple #4: Ontology-A:Switch_off owl:equivalentProperty Ontology-B:Turn_off

The mapping relationships (RDF Triple #1/2/3/4) are stored in the mappingResult attribute of the
<ontologyMapping> resource to be created.

6. The hosting CSE shall return the successful response to the Originator with the resourceID of the created
<ontologyMapping> resource.

ď switch offĐ =ď turn offĐ

Ontology-A Ontology-B

Thing Thing

Devices Device

Sensor

LightSensor Light_Sensor

Mapping
Altorithms

owl:equivalentClass

owl:equivalentClass

owl:equivalentClass

owl:equivalentProperty

Figure 6.10.2-2: Example of the mapping result between ontology A and ontology B

6.10.3 Retrieve <ontologyMapping> (Get the ontology mapping result)
The ontology mapping result can be retrieved by the Retrieve operation against an <ontologyMapping> resource as
described in Table 6.10.3-1. The mapping result is contained in the mappingResult attribute. No resource specific
process is required.

Table 6.10.3-1: <ontologyMapping> RETRIEVE

<ontologyMapping> RETRIEVE
Associated Reference Point Mca, Mcc and Mcc'.
Information in Request
message All parameters defined in [1] table 8.1.2-2.

Processing at Originator
before sending Request According to clause 10.1.3 in [1].

Processing at Receiver The receiver shall follow the basic procedure according to clause 10.1.2 of [1].
Information in Response
message

All parameters defined in table 8.1.3-1 apply with the specific details for:
Content: attributes of the <ontologyMapping> resource as specified in [1]. The resulted
mapping relationships are contained in the mappingResult attribute of the
<ontologyMapping> resource.

Processing at Originator after
receiving Response According to clause 10.1.3 in [1].

Exceptions According to clause 10.1.3 in [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 29 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.10.4 Update <ontologyMapping> (Ontology Mapping)
The ontology mapping task may also be performed by the Update operation against an <ontologyMapping> resource.
This operation shall be used to generate new mapping results based upon an existing configuration of the
<ontologyMapping> with only necessary modifications. The procedure is similar to the Create operation described in
clause 6.10.2.

Table 6.10.4-1: <ontologyMapping> UPDATE

<ontologyMapping> UPDATE
Associated Reference Point Mca, Mcc and Mcc'.
Information in Request
message

All parameters defined in [1] table 8.1.2-2 apply with the specific details for:
Content: The resource content shall provide the information about an
<ontologyMapping> resource (e.g. attribute values) as described in [1].

Processing at Originator
before sending Request According to clause 10.1.4 in [1].

Processing at Receiver The receiver shall follow the basic procedure according to clause 10.1.4 of [1], with the
following specific details:
 Determine the source <ontology> and target <ontology> resources to be mapped

according to the sourceOntology and targetOntology attributes provided in the
request;

 Determine the ontology mapping method according to the mapping method
description including the mappingPolicy and mappingAlgorithmLinks attributes
provided in the request;

 Retrieve the source <ontology> and target <ontology> resources from a remote
CSE if needed;

 Retrieve the <mappingAlgorithm> resources from a remote CSE if needed;
 Create the ontology mapping relationships between the source <ontology> and the

target <ontology>;
 Store the mapping result in the <ontologyMapping> resource in the successful case.

Information in Response
message According to clause 10.1.4 in [1].

Processing at Originator after
receiving Response According to clause 10.1.4 in [1].

Exceptions According to clause 10.1.4 in [1].

6.10.5 Delete <ontologyMapping>
This procedure shall be used for deleting a <ontologyMapping> resource.

Table 6.10.5-1: <ontologyMapping> DELETE

<ontologyMapping> DELETE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message All parameters defined in table 8.1.2-2 in [1] apply

Processing at Originator
before sending Request According to clause 10.1.5 in [1]

Processing at Receiver According to clause 10.1.5 in [1]
Information in Response
message According to clause 10.1.5 in [1]

Processing at Originator
after receiving
Response

According to clause 10.1.5 in [1]

Exceptions According to clause 10.1.5 in [1]

6.11 <ontologyMappingAlgorithm> Procedure
Ontology mapping algorithms are represented as <ontologyMappingAlgorithm> resources under an
<ontologyMappingAlgorithmRepository> resource. They can be added, updated, retrieved and deleted by the CRUD

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 30 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

operation against a <ontologyMappingAlgorithm> resource following the basic procedures as specified in clause 10.1 in
[1]. There is no resource-specific process to be defined.

6.12 <ontologyMappingAlgorithmRepository> Procedure
The CRUD operation against a <ontologyMappingAlgorithmRepository> resource following the basic procedures as
specified in clause 10.1 in [1]. There is no resource-specific process to be defined.

6.13 <semanticRuleRepository> Operations

6.13.1 Introduction
A <semanticRuleRepository> resource is a child resource of the <CSEBase> resource. The <semanticRuleRepository>
resource may have one or multiple <reasoningRules> child resources to represent different sets of reasoning rules in the
oneM2M system. A reasoning initiator can create <reasoningJobInstance> child resources of a
<semanticRuleRepository> resource to initiate desired reasoning operations.

6.13.2 Create <semanticRuleRepository>
This procedure is used for creating a <semanticRuleRepository> resource as described in Table 6.13.2-1.

Table 6.13.2-1: <semanticRuleRepository> CREATE

<semanticRuleRepository> CREATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in TS-0001 [1] table 8.1.2-3 apply with the specific details for:
Content: The resource content provides the information as defined in the resource
definition of <semanticRuleRepository> resource.

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.2 in oneM2M TS-0001 in [1].
Information in Response
message

All parameters defined in table 8.1.3-1 in [1] apply with the specific details for:
Content: Address of the created <semanticRuleRepository> resource, according to
clause 10.1.2 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 in [1].

6.13.3 Retrieve <semanticRuleRepository>
This procedure is used for retrieving the attributes of a <semanticRuleRepository> resource as described in Table
6.13.3-1.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 31 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.13.3-1: <semanticRuleRepository> RETRIEVE

<semanticRuleRepository> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in Table 8.1.2-3 in [1] apply.

Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 in [1].
Information in Response
message

All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:
Content: Attributes of the <semanticRuleRepository> resource.

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 in [1].

6.13.4 Update <semanticRuleRepository>
This procedure is used for updating the attributes of a <semanticRuleRepository> resource as described in Table 6.X.4-
1.

Table 6.13.4-1: <semanticRuleRepository> UPDATE

<semanticRuleRepository> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:
Content: Attributes of the <semanticRuleRepository> resource to be updated.

Processing at Originator
before sending Request According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.4 in oneM2M TS-0001 in [1].
Information in Response
message According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 in [1].

6.13.5 Delete <semanticRuleRepository>
This procedure is used for deleting a <semanticRuleRepository> resource as described in Table 6.13.5-1.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 32 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.13.5-1: <semanticRuleRepository> DELETE

<semanticRuleRepository> DELETE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message All parameters defined in table 8.1.2-3 in [1] apply.

Processing at Originator
before sending Request According to clause 10.1.5 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001 in [1].
Information in Response
message According to clause 10.1.5 in oneM2M TS-0001 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.5 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.5 in oneM2M TS-0001 in [1].

6.14 <reasoningRules> Operations

6.14.1 Introduction
A <reasoningRules> resource can be used to store a set of related reasoning rules (e.g. for supporting a particular
application). A <reasoningRules> resource is a child resource of the <semanticRuleRepository> resource. By
performing the CRUD operations on the <reasoningRules> resources, various reasoning rules (e.g., user-defined
reasoning rules based on business logic) can be created, discovered, retrieved, updated and deleted inside the oneM2M
system.

6.14.2 Create <reasoningRules>
This procedure is used for creating a <reasoningRules> resource as described in Table 6.14.2-1.

Table 6.14.2-1: <reasoningRules> CREATE

<reasoningRules> CREATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in Table 8.1.2-3 in TS-0001 [1] apply with the specific details
for:
Content: The resource content provides the information as defined in the resource
definition of <reasoningRules> resource.

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.2 in oneM2M TS-0001 in [1].
Information in Response
message

All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:
Content: Address of the created <reasoningRules> resource, according to
clause 10.1.2 in [i.3].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 in [1].

6.14.3 Retrieve <reasoningRules>
This procedure is used for retrieving the attributes of a <reasoningRules> resource as described in Table 6.14.3-1.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 33 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.14.3-1: <reasoningRules> RETRIEVE

<reasoningRules> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in table 8.1.2-3 in [1] apply.

Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 in [1].
Information in Response
message

All parameters defined in Table 8.1.3-1 in [1] apply with the specific details for:
Content: Attributes of the <reasoningRules> resource.

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 in [1].

6.14.4 Update <reasoningRules>
This procedure is used for updating the attributes of a <reasoningRules> resource as described in Table 6.14.4-1.

Table 6.14.4-1: <reasoningRules> UPDATE

<reasoningRules> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in Table 8.1.2-3 in [1] apply with the specific details for:
Content: Attributes of the <reasoningRules> resource to be updated.

Processing at Originator
before sending Request According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.4 in oneM2M TS-0001 in [1].
Information in Response
message According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 in [1].

6.14.5 Delete <reasoningRules>
This procedure is used for deleting a <reasoningRules> resource as described in table 6.14.5-1.

Table 6.14.5-1: <reasoningRules> DELETE

<reasoningRules> DELETE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message All parameters defined in Table 8.1.2-3 in [1] apply.

Processing at Originator
before sending Request According to clause 10.1.5 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001 in [1].
Information in Response
message According to clause 10.1.5 in oneM2M TS-0001 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.5 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.5 in oneM2M TS-0001 in [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 34 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.15 <reasoningJobInstance> Operations

6.15.1 Introduction
A Reasoning Initiator (RI), such as an AE or CSE, may trigger two types of reasoning operations. One type is a “one-
time” reasoning operation. This is applicable to the case where a reasoning operation can be executed over a Fact Set
(FS) and a Rule Set (RS) that may not change over time. In comparison, the other type is a “continuous” reasoning
operation. The second type is applicable to the cases where the input FS and RS for reasoning may change over time,
and accordingly the previously inferred knowledge may not be valid anymore. Therefore, new reasoning is executed
over the latest version of FS and RS in order to generate up-to-date inferred knowledge.

 A <reasoningJobInstance> resource represents a specific reasoning job instance for enabling the two types of
reasoning operations. A RI initiates a desired reasoning operation by creating a <reasoningJobInstance> resource as a
child resource of a <semanticRuleRepository> resource.

6.15.2 Create <reasoningJobInstance>
This procedure is used for creating a <reasoningJobInstance> resource as described in Table 6.15.2-1.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 35 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.15.2-1: <reasoningJobInstance> CREATE

<reasoningJobInstance> CREATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in [1] table 8.1.2-3 apply with the specific details for:
Content: The resource content provides the information as defined in the resource
definition of <reasoningJobInstance> resource.

Processing at Originator
before sending Request According to clause 10.1.2 in oneM2M TS-0001 in [1].

Processing at Receiver The Receiver follows the basic procedure according to clause 10.1.4 in oneM2M TS-
0001 [1], with the following specific details:

1. The receiver first retrieves the facts from the resources referred to by the
factSet attribute. For example,
o If a referred resource is a type of <semanticDescriptor> resource, the RDF

triples included in the descriptor attribute will be collected.
o If a referred resource is a type of <ontology> resource, the data included in

the ontologyContent attribute will be collected.

2. The receiver retrieves all the related reasoning rules for the resources referred
to by the ruleSet attribute. For example,
o If a referred resource is a <reasoningRules> resource, the rules included in

the ruleRepresentation attribute will be collected.

3. The receiver includes the retrieved facts and rules from the previous steps, as
well as optional facts/rules based on local policies, as inputs for the semantic
reasoning operation. The receiver performs semantic reasoning processing
using these inputs and produces the reasoning result and stores it in the
resultRepresentation attribute of the created <reasoningJobInstance>
resource.

4. If the created <reasoningJobInstance> resource represents a continuous
reasoning operation (i.e., the reasoningType attribute is set to “continuous”),
subsequent reasoning processing will be automatically triggered and
performed according to the values of reasoningMode and reasoningPeriod
attributes and the resultRepresentation attribute will be overwritten with the
latest reasoning result.

Information in Response
message

All parameters defined in table 8.1.3-1 in [1] apply with the specific details for:
Content: Address of the created <reasoningJobInstance> resource, according to
clause 10.1.2 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.2 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.2 in oneM2M TS-0001 in [1].

6.15.3 Retrieve <reasoningJobInstance>
This procedure is used for retrieving the attributes of a <reasoningJobInstance> resource as described in Table 6.15.3-
1.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 36 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.15.3 -1: <reasoningJobInstance> RETRIEVE

<reasoningJobInstance> RETRIEVE
Associated Reference
Point Mca, Mcc and Mcc'.

Information in Request
message All parameters defined in table 8.1.2-3 in [1] apply.

Processing at Originator
before sending Request According to clause 10.1.3 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.3 in oneM2M TS-0001 in [1].
Information in Response
message

All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:
Content: Attributes of the <reasoningJobInstance> resource.

Processing at Originator
after receiving
Response

According to clause 10.1.3 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.3 in oneM2M TS-0001 in [1].

6.15.4 Update <reasoningJobInstance>
This procedure is used for updating the attributes of a <reasoningJobInstance> resource as described in Table 6.15.4-1.

Table 6.15.4-1: <reasoningJobInstance> UPDATE

<reasoningJobInstance> UPDATE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message

All parameters defined in table 8.1.2-3 in [1] apply with the specific details for:
Content: Attributes of the <reasoningJobInstance> to be updated.

Processing at Originator
before sending Request According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.4 in oneM2M TS-0001 in [1].
Information in Response
message According to clause 10.1.4 in oneM2M TS-0001 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.4 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.4 in oneM2M TS-0001 in [1].

6.15.5 Delete <reasoningJobInstance>
This procedure is used for deleting a <reasoningJobInstance> resource as described in Table 6.15.5-1.

Table 6.15.5-1: <reasoningJobInstance> DELETE

<reasoningJobInstance> DELETE
Associated Reference
Point Mca, Mcc and Mcc'

Information in Request
message All parameters defined in table 8.1.2-3 in [1] apply.

Processing at Originator
before sending Request According to clause 10.1.5 in oneM2M TS-0001 in [1].

Processing at Receiver According to clause 10.1.5 in oneM2M TS-0001 in [1].
Information in Response
message According to clause 10.1.5 in oneM2M TS-0001 in [1].

Processing at Originator
after receiving
Response

According to clause 10.1.5 in oneM2M TS-0001 in [1].

Exceptions According to clause 10.1.5 in oneM2M TS-0001 in [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 37 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7 Functional Descriptions

7.1 Overview
This clause specifies functional operations of semantic functions including access control, semantics annotation,
semantic filtering and discovery, semantic queries and query scope, semantics reasoning, semantics mashup,
semantics-based data analytics, ontology management, and semantics validation. Some of these functional operations
are based on the basic resource procedures as specified in clause 6.

7.2 Access Control

7.2.1 Direct ACP control via semantic graph store

7.2.1.1 Introduction

When realizing semantic functionalities and operations (e.g. semantic resource discovery or semantic query), a
centralized Semantic Graph Store (SGS) can be used in the system to store RDF triples which are collected from the
<semanticDescriptor> resources distributed in the resource tree. However, oneM2M uses <accessControlPolicy>
resources to define Access Control Policies (ACP) and those resources are hosted in the resource tree and referred/used
by other resources through accessControlPolicyIDs attribute. In other words, any resource accesses (e.g. CRUD or
discovery) to a specific resource shall be compliant to certain access control policies as specified by the
accessControlPolicyIDs attribute of this resource. Since <semanticDescriptor> resources have their own access control
policies as defined in the accesscontrolPolicyIDs attribute, semantic operations to be executed directly on the RDF
triples stored at the SGS shall follow those access control policies in the sense that RDF triples from certain
<semanticDescriptor> resources shall not be used or involved in a semantic operation processing if it is not allowed by
the corresponding access control policies.

Figure 7.2.1.1-1 gives an example of an access control policy for two <semanticDescriptor> resources, where there are
two access control policies (i.e. <accessControlPolicy1> and <accessControlPolicy2>). The access to
<semanticDescriptor1> is controlled by <accessControlPolicy1> and <accessControlPolicy2>, while the access to
<semanticDescriptor2> is only controlled by <accessControlPolicy2>.

<semanticsDescriptor1>

accessControlPolicyID:
URI to <accesscontrolPolicy1>
URI to <accesscontrolPolicy2>

descriptor: triple set for
sample 1 and sample 2

<accesscontrolPolicy1>

privileges: (originator; context(optional); operation)
rule-1: AE1, AE2, AE3; Retrieve, Discovery
rule-2: AE1, AE3; Create, Update, Delete

<accesscontrolPolicy2>

privileges: (originator; context(optional); operation)
rule-3: AE1, AE2; Discovery

<semanticsDescriptor2>

accessControlPolicyID:
URI to <accesscontrolPolicy2>

descriptor:
triple set for sample 3

Figure 7.2.1.1-1: Example of access control policy for <semanticDescriptor>

In direct ACP control via semantic graph store, access control for any semantic operation (e.g. semantic resource
discovery, semantic query, etc.) shall be directly enforced in the SGS. For this purpose, the following types of semantic
triples shall be generated according to the oneM2M resource tree (i.e. <semanticDescriptor> and
<accessControlPolicy> resources) and added to the SGS before the semantic operation is executed at the SGS; in

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 38 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

addition, those four types of semantic triples shall be synchronized with the oneM2M resource tree (i.e. changes on or
related to <semanticDescriptor> and <accessControlPolicy> resources):

• SD Original Triples: RDF triples or other semantic representation contained in the descriptor attribute of a
<semanticDescriptor> resource. In addition, the relationship between a <semanticDescriptor> resource and its
accessControlPolicyIDs shall be represented in a semantic form and stored in the SGS.

• SD Relationship Triples: RDF triples or other semantic representation used to describe the belonging
relationship between each SD Original Triple (i.e. contained in the descriptor attribute of a
<semanticDescriptor> resource) and the corresponding <semanticDescriptor> resource.

• ACP-SD Binding Triples: RDF triples or other semantic representation used to describe which
<accessControlPolicy> shall be applied to which <semanticDescriptor> (i.e. the binding relationship between
a <semanticDescriptor> resource and its accessControlPolicyIDs attribute). For oneM2M, such binding
relationship shall be obtained from the resource <semanticDescriptor>'s accessControlPolicyIDs attribute.

• ACP Triples: RDF triple or other semantic representation used to describe ACP policies/rules (as defined in
<accessControlPolicy> resources) for semantic resources (e.g. <semanticDescriptor>).

Overall, direct ACP control via the SGS shall consist of the following tasks:

• Task 1: Store SD Original Triples in the SGS. Generate SD Relationship Triples, store them in the SGS. This
task is detailed in clause 7.2.1.2.

• Task 2: Generate ACP-SD Binding Triples and ACP Triples; store them in the SGS. This task is detailed in
clause 7.2.1.3.

• Task 3: Conduct semantic operations with direct ACP control in the SGS. Semantic operations are conducted
with the selected semantic triples which are associated with the Access Control Rules allowing the Originator
to operate (which is based on the work of Task 1 and Task 2). This task is detailed in clause 7.2.1.4.

• Task 4: Synchronize ACP Triples, ACP-SD Binding Triples, SD Relationship Triples, and SD Original
Triples as stored in the SGS with any updated <semanticDescriptor> and/or <accessControlPolicies>
resources in the oneM2M resource tree. This task is detailed in clause 7.2.1.5.

7.2.1.2 Create SD relationship triples

Access control policies for a <semanticDescriptor> resource have been defined in its accesscontrolPolicyIDs attribute.
In other words, the granularity for defining ACP is on a resource-level in the sense that all the RDF triples stored in the
descriptor attribute of the <semanticDescriptor> resource should be compliant to the same ACP as specified by the
accessControlPolicyIDs attribute of this <semanticDescriptor> resource. However, when those RDF triples (i.e. SD
Original Triples) are copied to the SGS, they are not stored under any resource/attribute anymore which is different than
the way oneM2M resource tree works. Therefore, a way is needed to re-represent the association relationship between a
SD Original Triple and its <semanticDescriptor> resource in SGS in order to perform the same ACP enforcement
directly in the SGS. In other words, SD Relationship Triples shall be generated and stored in the SGS.

In order to do so, an internal ontology (referred to as Semantic Descriptor Ontology) with two classes
semanticDescriptor and atomDescription, and several properties describedIn, hasSubject hasObject and hasProperty
shall be used (see Figure 7.2.1.2-1). Note that the class semanticDescriptor is the concept to model a
<semanticDescriptor> resource, while atomDescription is used to model a SD Original Triple; the atomDescription has
four properties describedIn, hasSubject hasObject and hasProperty. For example, for a triple like "classX propertyY
classZ" stored in a <semanticDescriptor> resource (which is termed as SD Original Triple), the following association
triples shall be created for building the association and stored in the SGS; those association triples are termed as SD
Relationship Triples.

atomDescriptionA hasSubject classX

atomDescriptionA hasObject classZ

atomDescriptionA hasproperty propertyY

atomDescriptionA describedIn semanticDescriptorA

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 39 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure 7.2.1.2-1: Association between a SD original triple and the semanticDescriptor instance

An illustration of such a process is shown in Figure 7.2.1.2-1. As an example, consider a <semanticDescriptor>
resource called <SD-1>, which include 4 SD Original Triples:

HomeA rdf:type ex:Home.

HomeA ex:hasLocation LocationA.

LocationA ex:hasLatitude "300".

LocationA ex:hasLongitude "200".

When those four SD Original Triple are copied to SGS, the following SD Relationship Triple shall be shall be
generated:

@PREFIX sd: <http://semanticDescriptor.org>.

atomDescription1 rdf:type sd:atomDescription.

<SD-1> rdf:type sd:semanticDescriptor.

atomDescription1 sd:hasSubject HomeA.

atomDescription1 sd:hasObject ex:Home.

atomDescription1 sdhasProperty rdf:type.

atomDescription1 sd:describedIn <SD-1>.

atomDescription2 sd:hasSubject HomeA.

atomDescription2 sd:hasObject LocationA.

atomDescription2 sd:hasProperty ex:hasLocation.

atomDescription2 sd:describedIn <SD-1>.

atomDescription3 sd:hasSubject LocationA.

atomDescription3 sd:hasObject "300".

atomDescription3 sd:hasProperty ex:Latitude.

atomDescription3 sd:describedIn <SD-1>.

atomDescription4 sd:hasSubject LocationA.

atomDescription4 sd:hasObject "200".

atomDescription4 sd:hasProperty ex:hasLongtitude.

atomDescription4 sd:describedIn <SD-1>.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 40 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.1.3 Create ACP triples and ACP binding triples

7.2.1.3.1 Access Control Ontology

In order to represent an ACP in a semantic form, the Access Control Ontology is introduced, which is shown in
Figure 7.2.1.3.1-1. This ontology is defined by following how an oneM2M <accessControlPolicy> resource is
specified in oneM2M TS-0001 [1], where an access-control-rule-tuple consists of parameters such as
accessControlOriginators, accessControlOperations, and accessControlContexts. Accordingly, this ontology defines two
new classes:

• accessControlPolicy; and

• accessControlRule.

In addition, five new properties (i.e. hasACPRule, hasACOriginator, hasACOperations, hasACContexts and appliedTo)
are defined. More details about those terms are introduced as follows:

• The property hasACPRule is used to link an accessControlPolicy instance with an accessControlRule instance.
Properties hasACOriginator, hasACOperations and hasACContexts (optional) basically describe an
accessControlRule instance and are used to specify who shall issue what operations under which conditions.
As these triples describe the ACP themselves, they are referred to as ACP Triples.

• The property appliedTo is used to describe which <semanticDescriptor> resource an accessControlPolicy
instance shall be applied to. As these triples bind <accessControlPolicy> and <semanticDescriptor>, they are
referred to as ACP-SD Binding Triples.

Figure 7.2.1.3.1-1: Access control ontology model

Access Control Ontology

@ prefix rdf : < http :// www . w 3 . org / 1999 / 02 / 22 - rdf - syntax - ns #> .
@ prefix rdfs : < http :// www . w 3 . org / 2000 / 01 / rdf - schema #> .
@ prefix xsd : < http :// www . w 3 . org / 2001 / XMLSchema #> .
@ prefix acp : < http :// accessControlPolicy . org / > .
@ prefix ex : < http :// example . org / > .
@ prefix m 2 m : < http :// oneM 2 M . org / > .

acp : accessControlPolicy rdf : type rdfs : Class .
acp : accessControlRule rdf : type rdfs : Class .

acp : hasACPRule rdf : type rdf : Property ;
 rdfs : domain acp : accessControlPolicy ;

 rdfs : range acp : accessControlRule .

acp : hasACOriginator rdf : type rdf : Property ;
rdfs : domain acp : accessControlRule ;
rdfs : range m 2 m : AE _ ID , m 2 m : CSE _ ID , xsd : anyURI .

acp : hasACContexts rdf : type rdf : Property ;
 rdfs : domain acp : accessControlRule ;
 rdfs : range m 2 m : ipv 4 , m 2 m : ipv 6 , m 2 m : contryCode , rdfs : Literal .

acp : hasACOperations rdf : type rdf : Property ;
rdfs : domain acp : accessControlRule ;
rdfs : range m 2 m : accessControlOperations , rdfs : Literal .

acp : appliedTo rdf : type rdf : property ;
rdfs : domain acp : accessControlPolicy ;
rdfs : range xsd : anyURI , rdfs : Literal , m 2 m : ID , ex : resourceGroup .

 Access Control Triples

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 41 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.1.3.2 Example of Using Access Control Ontology

Figure 7.2.1.3.2-1 shows an example of the eHealth Ontology Reference Model, which will be used to develop the SGS
example in Figure 7.2.1.3.2-2.

eHealthcare Ontology Reference Model

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example.org/> .
@prefix acp: <http://accessControlPolicy.org/>.

ex:Person a rdfs:Class .

ex:dateOfBirth a rdf:Property ; rdfs:domain ex:Person ; rdfs:range xsd:date ; rdfs:comment "Date of Birth" .

ex:name a rdf:Property ; rdfs:domain ex:Person ; rdfs:range rdfs:Literal ; rdfs:comment "name of the person" .

ex:Patient rdfs:subClassOf ex:Person .
ex:Doctor rdfs:subClassOf ex:Person .

ex:takeCareOf a rdf:Property ; rdfs:domain ex:Doctor ; rdfs:range rdfs:Patient ;
rdfs:comment "doctor take care of (relation) patient" .

ex:MeasurementSample a rdfs:Class .

ex:measureOn a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range xsd:date ;
rdfs:comment "the date of measurement" .

ex:measureFor a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range ex:Patient ;
rdfs:comment "sample is measure for which patient" .

ex:unit a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range rdfs:Literal ;
rdfs:comment "unit of the value" .

ex:BPMeasurementSample rdfs:subClassOf ex:MeasurementSample .

ex:dValue a rdf:Property ; rdfs:domain ex:BPMeasurementSample ; rdfs:range xsd:integer ;
rdfs:comment "value of the diastolic" .

ex:sValue a rdf:Property ; rdfs:domain ex:BPMeasurementSample ; rdfs:range xsd:integer ;
rdfs:comment "value of the systolic" .

ex:resourceGroup a rdf:Class ;
rdfs:comment "contain a list of resources in resource tree" .

ex:containMeasurement a rdf:Property ; rdfs:domain ex:resourceGroup ; rdfs:range ex:MeasurementSample ;
rdfs:comment "resourceGroup contains one or more measurement samples" .

Figure 7.2.1.3.2-1: eHealth ontology reference model

Figure 7.2.1.3.2-2 describes an example of ACP Triples and ACP-SD Binding Triples in the SGS, based on the
<semanticDescriptor> resource example shown in Figure 7.2.1.1-1 and the Access Control Ontology defined in
Figure 7.2.1.3.1-1. In this example, there are two patients Jack and Alice; their doctors are John and Steve, respectively.
There are three blood pressure meansurement samples (i.e. Sample1 for Jack, Sample2 and Sample3 for another
patient3). Corresponding triples are shown in black text in Figure 7.2.1.3.2-2, which are generated based on the eHealth
Ontology Reference Model in Figure 7.2.1.3.2-1.

The triples in red text in Figure 7.2.1.3.2-2 are added for access control purpose according to the proposed Access
Control Ontology model in Figure 7.2.1.3.1-1, when new ACPs are created or updated. In this example, it is assumed
two access control polices be created. First, two <semanticDescriptor> resources are described
(i.e. semanticDescriptor1 contains Sample1 and Sample2, while semanticDescriptor2 contains Sample3. Then, two
access control policies are defined (i.e. accessControlPolicy1 is applied to semanticDescriptor1, while
accessControlPolicy2 is applied to both semanticDescriptor1 and semanticDescriptor2). Next, the detailed Access
Control Rules for accessControlPolicy1 and accessControlPolicy2 are described:

• accessControlPolicy1 has two accessControlRules, which states that 1) AE-ID-1, AE-ID-2, and AE-ID-3 can
RETRIEVE and DISCOVER triples in the semanticDescriptor which accessControlPolicy1 is applied to
(i.e. semanticDescriptor1); 2) AE-ID-1 and AE-ID-3 can CREATE, UPDATE, or DELETE triples in the
semanticDescriptor which accessControlPolicy1 is applied to (i.e. semanticDescriptor1).

• For accessControlPolicy2, only one accessControlRule is defined; this accessControlRule states that AE-ID-1
and AE-ID-2 can DISCOVER triples in the semanticDescriptor which accessControlPolicy2 is applied to
(i.e. semanticDescriptor1 and semanticDescriptor2).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 42 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

eHealth Semantic Graph Store

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example.org/> .
@prefix acp: <http://accessControlPolicy.org/>.

ex:Patient1 a ex:Patient ; ex:name "Jack" ; ex:dateOfBirth "2000-08-03"^^xsd:date .
ex:Patient2 a ex:Patient ; ex:name "Alice" ; ex:dateOfBirth "1998-06-03"^^xsd:date .

ex:Doctor1 a ex:Doctor ; ex:name "John" ; ex:dateOfBirth "1944-08-21"^^xsd:date ; ex:takeCareOf
ex:Patient1 .
ex:Doctor2 a ex:Doctor ; ex:name "Steve" ; ex:dateOfBirth "1947-02-11"^^xsd:date ; ex:takeCareOf
ex:Patient2 .

ex:Sample1 a ex:BPMeasurementSample ;
ex:measureOn "2014-08-21"^^xsd:date ; ex:measureFor ex:Patient1 ;
ex:unit "mmHg" ; ex:sValue "150"^^xsd:integer ; ex:dValue "100"^^xsd:integer .

ex:Sample2 a ex:BPMeasurementSample ;
ex:measureOn "2014-07-24"^^xsd:date ; ex:measureFor ex:Patient3 ;
ex:unit "mmHg" ; ex:sValue "140"^^xsd:integer ; ex:dValue "96"^^xsd:integer .

ex:Sample3 a ex:BPMeasurementSample ;
ex:measureOn "2012-11-24"^^xsd:date ; ex:measureFor ex:Patient3 ;
ex:unit "mmHg" ; ex:sValue "130"^^xsd:integer ; ex:dValue "57"^^xsd:integer .

Below are triples associating measurement samples with corresponding access control policy
ex:semanticsDescriptor1 a ex:resourceGroup ; ex:containMeasurement ex:Sample1, ex:Sample2 .
ex:semanticsDescriptor2 a ex:resourceGroup ; ex:containMeasurement ex:Sample3 .

acp:accessControlPolicy1 acp:appliedTo ex:semanticsDescriptor1 .
acp:accessControlPolicy2 acp:appliedTo ex:semanticsDescriptor1 .
acp:accessControlPolicy2 acp:appliedTo ex:semanticsDescriptor2 .

Below are triples created for access control policy 1 resource based on access control ontology
acp:accessControlRule1_1 rdf:type acp:accessControlRule.
acp:accessControlRule1_2 rdf:type acp:accessControlRule.
acp:accessControlPolicy1 rdf:type acp:accessControlPolicy.
acp:accessControlPolicy1 acp:hasACPRule acp:accessControlRule1_1, acp:accessControlRule1_2 .

acp:accessControlRule1_1 acp:hasACOriginator "AE-ID-1", "AE-ID-2", "AE-ID-3" .
acp:accessControlRule1_1 acp:hasACOperations "RETRIEVE", "DISCOVERY" .

acp:accessControlRule1_2 acp:hasACOriginator "AE-ID-1", "AE-ID-3" .
acp:accessControlRule1_2 acp:hasACOperations "CREATE", "UPDATE", "DELETE" .

Below are triples created for access control policy 2 resource based on access control ontology
acp:accessControlRule2_1 rdf:type acp:accessControlRule.
acp:accessControlPolicy2 rdf:type acp:accessControlPolicy.
acp:accessControlPolicy2 acp:hasACPRule acp:accessControlRule2_1 .

acp:accessControlRule2_1 acp:hasACOriginator "AE-ID-1", "AE-ID-2" .
acp:accessControlRule2_1 acp:hasACOperations "DISCOVERY" .

Figure 7.2.1.3.2-2: eHealth triples in the SGS

7.2.1.4 Conduct semantic operations with direct ACP control

This clause is to introduce more details on implementing Task-3 as discussed in clause 7.2.1.1. This clause uses
semantic query as an example of semantic operatoins to be excuted with direct ACP control in the SGS.

When the Hosting CSE receives a SPARQL query from the Originator, it shall:

1) add the access control related patterns according to the ID of the Originator and the request operation to be
conducted (e.g. semantic discovery) into the received SPARQL statement;

2) add ACP-SD binding related patterns into the received SPARQL statement (i.e. constraints on ACP-SD
Binding Triples). For each triple pattern contained in the original SPARQL query statement, a new ACP-SD
binding triple pattern shall be added;

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 43 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

3) add SD relationship related patterns (i.e. constraints on SD Relationship Triples) to the received SPARQL
statement. For each triple in the original SPARQL query statement, four new triple patterns shall be added to
describe the SD relationship; and

4) execute the revised SPARQL statement to make query on the SGS.

For example, in the scenario of the example in Figure 7.2.1.3.2-2, when AE-ID-3 sends the following SPARQL query
request to the Hosting CSE:

select distinct ?sample ?sValue ?dValue
where
{
 ?sample rdf:type ex:BPMeasurementSample .
 ?sample ex:sValue ?sValue .
 ?sample ex:dValue ?dValue .
}

The Hosting CSE shall add some access control related statements according to the ID (i.e. AE-ID-3) of the Originator
and the request operation (i.e. DISCOVERY) of the query, the revised SPARQL query is given as below (red text for
ACP constraints, blue text for ACP-SD binding constraints, and orange text for SD relationship constraints):

select distinct ?sample ?sValue ?dValue
where
{
 ?accessControlRule acp:hasACOriginator "AE-ID-3" . #---
 ?accessControlRule acp:hasACOperations "DISCOVERY" . # |---> ACP
Triples
 ?accessControlPolicy acp:hasACPRule ?accessControlRule . #---

 ?accessControlPolicy acp:appliedTo ?semanticDescriptor1 . #---
 ?accessControlPolicy acp:appliedTo ?semanticDescriptor2 . # |---> ACP-SD
Binding Triples
 ?accessControlPolicy acp:appliedTo ?semanticDescriptor3 . #---

 ?atomDescription1 sd:describedIn ?semanticDescriptor1 . #---
 ?atomDescription1 sd:hasSubject ?sample . # |
 ?atomDescription1 sd:hasObject ex:BPMeasurementSample . # |
 ?atomDescription1 sd:hasProperty rdf:type . # |
 ?atomDescription2 sd:describedIn ?semanticDescriptor2 . # |
 ?atomDescription2 sd:hasSubject ?sample . # |---> SD
Relationship Triples
 ?atomDescription2 sd:hasObject ?sValue . # |
 ?atomDescription2 sd:hasProperty ex:sValue . # |
 ?atomDescription3 sd:describedIn ?semanticDescriptor3 . # |
 ?atomDescription3 sd:hasSubject ?sample . # |
 ?atomDescription3 sd:hasObject ?dValue . # |
 ?atomDescription3 sd:hasProperty ex:dValue . #---
 ?sample rdf:type ex:BPMeasurementSample .
 ?sample ex:sValue ?sValue .
 ?sample ex:dValue ?dValue .
}

Next, the revised SPARQL query statement is excuted within the SGS. Since ACP have already been reprensented in a
semantical form, the query result of the revised SPARQL query is the desried result with enforced direct acceess
control. Figure 7.2.1.4-1 shows the SPARQL query result in the above example over the eHealth SGS in
Figure 7.2.1.3.2-2. According to the access control triples added to the SGS (i.e. red text in Figure 7.2.1.3.2-2), AE-ID-
3 is only allowed to DISCOVER samples included in semanticDescriptor1 (i.e. Sample1 and Sample2). As a result, the
returned result for SPARQL query in Figure 7.2.1.4-1 presents the selected content of Sample1 and Sample2.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 44 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure 7.2.1.4-1: Example for eHealth semantic query result with access control

7.2.1.5 Synchronization ACP triples and SD-related triples in the SGS with
the resource tree

7.2.1.5.1 Introduction

When making ACP policies/rules be also available in a semantical form (i.e. ACP Triples) in the SGS for supporting
direct access control, synchronization between <accessControlPolicy> resources at the Hosting CSE and ACP Triples
at the SGS is required. Depending on different cases, the Hosting CSE shall perform the following tasks in order to
maintain such synchronization:

• When a new <accessControlPolicy> resource is created, the Hosting CSE shall generate new ACP Triples
according to the ACP ontology and stores these new ACP Triples in the SGS (see clause 7.2.1.5.2).

• When the privileges attribute of an existing <accessControlPolicy> resource is updated, the Hosting CSE
shall generate new ACP Triples and update corresponding old ACP Triples at the SGS accordingly (see
clause 7.2.1.5.3).

• When an existing <accessControlPolicy> resource is deleted, the Hosting CSE shall remove the
corresponding ACP Triples at the SGS (see clause 7.2.1.5.4).

Similar to ACP Triples, others such as SD Original Triples, SD Relationship Triples, and ACP-SD Binding Triples shall
be synchronized. Depending on different cases, the Hosting CSE shall perform the following tasks in order to maintain
such synchronization:

• When a <semanticDescriptor> is created:

- In this case, the Hosting CSE shall generate SD Relationship Triples and ACP-SD Binding Triples and
then store them in the SGS (see clause 7.2.1.5.5).

• When the accessControlPolicyIDs attribute of a <semanticDescriptor> resource changes:

- In this case, the Hosting CSE shall generate new ACP-SD Binding Triples and use them to update
corresponding old ACP-SD Binding Triples in the SGS. This case may apply also when the
accessControlPolicyIDs attribute of the parent changes (see clause 7.2.1.5.6).

• When the descriptor attribute of a <semanticDescriptor> resource changes:

- In this case, the Hosting CSE shall generate new SD Relationship Triples and use them to update old SD
Relationship Triples in the SGS (see clause 7.2.1.5.7).

• When a <semanticDescriptor> resource is deleted:

- In this case, the Hosting CSE shall delete all corresponding SD Original Triples, SD Relationship Triples
and ACP-SD Binding Triples from the SGS (see clause 7.2.1.5.8).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 45 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.2.1.5.2 Procedure for creating ACP triples when a new <accessControlPolicy> resource is
created

Figure 7.2.1.5.2-1 illustrates the procedure for creating ACP Triples in SGS, which is triggered when an Originator
requests to create a new <accessControlPolicy> resource at the Hosting CSE.

The following steps shall be performed:

• Step 1: The Originator sends a request to create a new <accessControlPolicy> resource to the Hosting CSE.
This message contains the representation of <accessControlPolicy> to be created (e.g. the value of privileges
attribute).

• Step 2: The Hosting CSE receives the request in Step 1 and, subject to the Originator access rights
verification, shall create the requested <accessControlPolicy> resource.

EXAMPLE 1: Assume <acp1> be the newly created ACP resource and its URI "acp1URI". Assuming <acp1>
has one access control rule (e.g. acr11) and the URI of the corresponding privileges attribute is
"acr11URI". For exemplification, assume also that acr11 allows an AE ("AE-ID-1") to perform
DISCOVERY operations.

• Step 3: The Hosting CSE sends a response to the Originator.

EXAMPLE 2: If Step 1 was successful, "acp1URI" will be contained in this response message.

• Step 4: The Hosting CSE generates corresponding ACP Triples based on the content of <acp1> and the ACP
ontology.

EXAMPLE 3: An example of ACP Triples for <acp1> resource created in Step 1 is illustrated in
Figure 7.2.1.5.2-2.

- In Figure 7.2.1.5.2-2:

 line#1 defines prefix "acp" which will used in lines #2-#6.

 line#2 defines a new acp:accessControlPolicy class instance for <acp1> resource. The subject
value of this triple (i.e. acp:acp1) is "acp1URI", therefore the subject value of this triple makes it
possible to locate the corresponding resource <acp1>. The Hosting CSE shall also use "acp1URI"
to locate corresponding triples in the SGS (e.g. when updating existing ACP Triples).

 line#3 defines that acp:acp1 instance has an associated access control rule acr11. The object value
of this triple (i.e. acp:acr11) is "acr11URI", therefore the object value of this triple, makes it
possible to locate the corresponding privileges attribute of <acp1> resource. The Hosting CSE shall
use "acr11URI" to locate the corresponding triples in the SGS (e.g. when updating existing ACP
Triples).

 line#4 defines that acp:acr11 (i.e. the object on line#3) is an acp:accessControlRule class instance.

 line#5 and line#6 give the values of two properties of acp:acr11 based on the assumptions in this
example.

NOTE: The triples on lines #4-#6 define the access control rule acr11. If <acp1> has more access control rules,
additional access control rules will be defined similarly to those on lines #4-#6.

o Optionally: The Hosting CSE may add the address of the SGS to the <accessControlPolicy> resource
created in Step 2 in a new attribute, to enable direct addressing of the triples.

• Step 5: The Hosting CSE sends a SPARQL request to store the ACP Triples created in Step 4 to the selected
SGS.

EXAMPLE 4: The ACP Triples shown in Figure 7.2.1.5.2-2 will be contained in the SPARQL request.

• Step 6: The SGS receives the SPARQL request, processes it and saves the ACP Triples into its graph store.

• Step 7: The SGS sends a response back to the Hosting CSE to confirm the request in Step 6 is successfully
executed.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 46 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Hosting CSEOriginator Sematic Graph
Store

1. Update <accessControlPolicy> Resource

2. Update <accessControlPolicy> with its new
representation given in Step 1

3. Response

7. Response

6. Process SPARQL request
e.g. update ACP Triples to SGS

4. Generate new ACP triples according to the new
<accessControlPolicy> resource (i.e. its privilege attribute)

5. SPARQL request e.g. update ACP Triples

Figure 7.2.1.5.2-1: Procedure for creating ACP triples in the SGS

@PREFIX acp: <http://accessControlPolicy.org> .

acp:acp1 rdf:type acp:accessControlPolicy .
acp:acp1 acp:hasACPRule acp:acr11 .
acp:acr11 rdf:type acp:accessControlRule .
acp:acr11 acp:hasACOriginator "AE-ID-1" .
acp:acr11 acp:hasACOperations "DISCOVERY" .

Line#1

Line#2
Line#3
Line#4
Line#5
Line#6

Figure 7.2.1.5.2-2: Example ACP triples corresponding to <acp1> resource

7.2.1.5.3 Procedure for updating ACP triples when an existing <accessControlPolicy> resource
is updated

The procedure for updating ACP Triples in a SGS follows a similar flow to the procedure used when a new
<accessControlPolicy> resource is created. In this case the Originator requests to update the privileges attribute of an
existing <accessControlPolicy> resource, as shown in Figure 7.2.1.5.3-1.

NOTE: This procedure applies also for updates of the accessControlPolicyIDs attribute of the
<semanticDecriptor> resource.

The following steps shall be performed:

• Steps 1 - 3: Similar to those describing Figure 7.2.1.5.2-1, but reflecting normal processing of an UPDATE
operation. In this case the Originator triggers an update of the privileges attribute of an existing
<accessControlPolicy>.

• Step 4: Based on the new value of the privileges attribute the Hosting CSE generates new ACP Triples

EXAMPLE 1: Assume the Originator aims to update the privileges attribute of <acp1> resource from
"DISCOVERY" to "DISCOVERY" and "RETRIEVE" as the new accessControlOperations. To
implement these changes in Figure 7.2.1.5.2-2 the Hosting CSE can simply add a new triple
e.g. "acp:acr11 acp:hasACOperations "RETRIEVE". " Alternatively, the Hosting CSE can
replace the triple on Line#6 to the new triple "acp:acr11 acp:hasACOperations "DISCOVERY",
"RETRIEVE". ".

• Step 5: The Hosting CSE sends a SPARQL request to the SGS to update existing ACP Triples related to
<acp1> resource to reflect the update being requested:

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 47 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

EXAMPLE 2: As described in Step 4, there are two options to implement this.

 The Hosting CSE adds a new triple with the following SPARQL request:

@PREFIX acp: http://accessControlPolicy.org>.
INSERT DATA
{ acp:acr11 acp:hasACOperations "RETRIEVE". }

 The Hosting CSE replaces Line#6 in Figure 7.2.1.5.1-2 with the SPARQL request:

@PREFIX acp: http://accessControlPolicy.org>.
DELETE
{?acr acp:hasACOperations ?operation }
WHERE
{
 ?acr acp:hasACOperations ?operation
 FILTER (?acr=acp:acr11)
}
INSERT DATA
{ acp:acr11 acp:hasACOperations "DISCOVERY", "RETRIEVE". }

• Step 6: The SGS processes the received SPARQL request and updates the corresponding ACP Triples.

• Step 7: The SGS sends a response to the Hosting CSE to inform it whether the request has successfully
executed.

Hosting CSEOriginator Sematic Graph
Store

1. Update <accessControlPolicy> Resource

2. Update <accessControlPolicy> with its new
representation given in Step 1

3. Response

7. Response

6. Process SPARQL request
e.g. update ACP Triples to SGS

4. Generate new ACP triples according to the new
<accessControlPolicy> resource (i.e. its privilege attribute)

5. SPARQL request e.g. update ACP Triples

Figure 7.2.1.5.3-1: Procedure for updating ACP triples in SGS

7.2.1.5.4 Procedure for deleting ACP triples when an existing <accessControlPolicy> resource is
deleted

The procedure for deleting ACP Triples in a SGS follows a similar flow to the procedure used when a new
<accessControlPolicy> resource is created. In this case, the Originator requests to delete an existing
<accessControlPolicy> resource, as shown in Figure 7.2.1.5.4-1.

The following steps shall be performed:

• Steps 1 - 3: Similar to those describing Figure 7.2.1.5.2-1, but reflecting normal processing of a DELETE
operation. In this case the Originator triggers the deletion of an existing <accessControlPolicy> resource.

• Step 4: The Hosting CSE shall send a SPARQL request to the SGS to delete existing ACP Triples

EXAMPLE: The following SPARQL request implements this request:

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 48 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

@#PREFIX acp: http://accessControlPolicy.org>.
DELETE
{
 ?acp ?p ?o
 ?s ?p2 ?acp
 ?acr ?p1 ?o1
}
WHERE
{
 ?acp ?p ?o
 ?s ?p2 ?acp
 ?acp acp:hasACPRule ?acr
 ?acr ?p1 ?o1
 FILTER (?acp=acp:acp1)
}

• Step 5: The SGS processes the received SPARQL request and removes all requested ACP Triples.

• Step 6: The SGS sends a response to the Hosting CSE to inform it whether the request was successfully
executed.

Hosting CSEOriginator Sematic Graph
Store

1. Delete <accessControlPolicy> Resource

2. Delete <accessControlPolicy> Resource

3. Response

6. Response

5. Process SPARQL request
e.g. remove ACP Triples

4. SPARQL request e.g. delete ACP Triples

Figure 7.2.1.5.4-1: Procedure for Deleting ACP Triples in the SGS

7.2.1.5.5 Procedure for creating ACP-SD binding triples and SD relationship triples in SGS

Figure 7.2.1.5.5-1 illustrates the procedure for creating ACP-SD Binding Triples and SD Relationship Triples in SGS,
which shall be triggered when an Originator requests to create a new <semanticDescriptor> resource.

After checking the access rights and other related security functions, the Hosting CSE shall create the
<semanticDescriptor> resource locally (referred to as sd1 and its URI assumed to be sd1URI). Then, the Hosting CSE
shall store all semantic triples as described in the descriptor attribute of SD1 resource to the SGS. More importantly, the
Hosting CSE shall generate new SD Relationship Triples and ACP-SD Binding Triples and shall store them to the SGS
as well. Note that if sd1 has no accessControlPolicyIDs attribute, ACP-SD Binding Triples shall not be generated.

The following steps shall be performed:

• Step 1: The Originator sends "Create <semanticDescriptor> Resource" request to the Hosting CSE. It is
assumed that the value of descriptor attribute and accessControlPolicyIDs attribute of <semanticDescriptor>
resource will be given in this request message:

- Assume the descriptor attribute contains only one SD Original Triple "S1 P1 O1".

- Assume the value of accessControlPolicyIDs is "acp1URI" i.e. the access control policy acp1 will be
applied.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 49 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• Step 2: The Hosting CSE accordingly creates the <semanticDescriptor> resource (referred to as sd1):

- Assume its URI is sd1URI.

• Step 3: The Hosting CSE sends a response to Originator to inform it if Step 2 is successfully completed.

• Step 4: Bases don the SD Original Triple contained in the descriptor attribute of sd1, the Hosting CSE
generates SD Relationship Triples.

- In our example, there is only one SD Original Triple, as shown below:

@PREFIX sd: <http://semanticDescriptor.org>.
sd:sd1 rdf:type sd:semanticDescriptor.
sd:tripleInstance11 rdf:type sd:atomDescription.
sd:tripleInstance11 sd:describedIn sd:sd1.
sd:tripleInstnace11 sd:hasSubject sd:S1.
sd:tripleInstnace11 sd:hasProperty sd:P1.
sd:tripleInstnace11 sd:hasObject sd:O1.

• Step 5: The Hosting CSE will generate the ACP-SD Binding Triples:

- In our example, since sd1's accessControlPolicyIDs attribute points to acp1 resource as shown below:

@PREFIX sd: <http://semanticDescriptor.org>.
@PREFIX acp: <http://accessControlPolicy.org>.
acp:acp1 rdf:type acp:accessControlPolicy.
sd:sd1 rdf:type sd:semanticDescriptor.
acp:acp1 acp:appliedTo sd:sd1.

• Step 6: The Hosting CSE sends a SPARQL request to the SGS to store these SD Relationship Triples and
ACP-SD Binding Triples to the SGS.

• Step 7: The SGS processes the SPARQL request and store corresponding SD Relationship Triples and ACP-
SD Binding Triples in the SGS.

• Step 8: The SGS sends a response message to the Hosting CSE to inform it if the SPARQL request in Step 6 is
successfully executed.

NOTE: If the <semanticDescriptor> resource being created in Step 2 does not have accessControlPolicyIDs
attribute, the accessControlPolicyIDs attribute of the parent resource may be used or system default
access privileges may be applied. The new ACP-SD Binding Triples will also be generated using either
the parent resource's accessControlPolicyIDs attribute or based on the default privileges.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 50 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Hosting CSEOriginator SGS

1. Create <semanticDescriptor> Resource

2. Create <semanticDescriptor> Resource and SD Original Triples

3. Response

6. SPARQL request to store SD Original Triples, SD
Relationship Triples, ACP-SD Binding Triples

8. Response

7. Process SPARQL request and
store all triples

4. Generate SD Relationship Triples.

5. Generate ACP-SD Binding Triples.

Figure 7.2.1.5.5-1: Procedure for creating SD relationship triples and ACP-SD binding triples

7.2.1.5.6 Procedure for updating ACP-SD binding triples in SGS

Figure 7.2.1.5.6-1 shows the procedure for updating ACP-SD Binding Triples when the accessControlPolicyIDs
attribute of a <semanticDescriptor> resource is updated. For example, assume the sd1 resource created earlier have its
accessControlPolicyIDs changed from acp1 to acp2; with the ACP Triples for the resource acp2 as follows:

@PREFIX acp: <http://accessControlPolicy.org>.
acp:acp2 rdf:type acp:accessControlPolicy.
acp:acp2 acp:hasACPRule acp:acr21.
acp:acr21 rdf:type acp:accessControlRule.
acp:acr21 acp:hasACOriginator "AE-ID-2".
acp:acr21 acp:hasACOperations "RETRIEVE".

The following steps shall be performed:

• Step 1: The Originator sends a request to update the resource sd1's accessControlPolicyIDs from the URI of
the resource acp1 to the URI of the resource acp2. The URI of the resource acp2 (i.e. acp2URI) is contained in
this request. The URI of the resource sd1 (i.e. sd1URI) is also contained in this request.

• Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting CSE updates sd1's
accessControlPolicyIDs with acp2's URI given in Step 1.

• Step 3: The Hosting CSE sends a response back to the Originator to inform it if the request in Step 1 is
successful or not.

• Step 4: Since the sd1's accessControlPolicyIDs is changed, the Hosting CSE generates a new ACP-SD
Binding Triple ("acp:acp2 acp:appliedTo sd:sd1") to reflect this change. This new ACP-SD Binding Triple
will replace the old ACP-SD Binding Triple (i.e. "acp:acp1 acp:appliedTo sd:sd1"):

(new ACP-SD Binding Triple) acp:acp2 acp:appliedTo sd:sd1
(old ACP-SD Binding Triple) acp:acp1 acp:appliedTo sd:sd1

• Step 5: The Hosting CSE sends an SPARQL request to replace the old ACP-SD Binding Triple in the SGS
with the new ACP-SD Binding Triple as shown in above Step 4. This SPARQL request for this example is
shown below:

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 51 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

@PREFIX acp: <http://accessControlPolicy.org>.
@PREFIX sd: <http:semanticDescriptor.org>.
DELETE
{ ?acp acp:appliedTo sd:sd1 }
WHERE
{
?acp acp:appliedTo sd:sd1
}
INSERT DATA
{ acp:acp2 acp:appliedTo sd:sd1 . }

• Step 6: The SGS processes the SPARQL request and updates the specified ACP-SD Binding Triples in Step 5.

• Step 7: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 5 is
successfully performed.

NOTE: If the accessControlPolicyIDs attribute of the <semanticDescriptor> resource was empty to start with, its
parent resource's accessControlPolicyIDs may be enforced. The hosting CSE will apply this step based
on updates to the accessControlPolicyIDs attribute of the parent resource.

Hosting CSEOriginator SGS

1. Update accessControlPolicyIDs for
<semanticDescriptor>

2. Update the accessControlPolicyIDs attribute
with the new value

3. Response

7. Response

6. Process the SPARQL request, update
ACP-SD Binding Triples

4. Generate new ACP-SD Binding Triples to associate the
<semanticDescriptor> resource with new acp

5. SPARQL request to update ACP-SD Binding Triples

Figure 7.2.1.5.6-1: Procedure for updating ACP-SD binding triples in the SGS

7.2.1.5.7 Procedure for updating SD relationship triples in SGS

Figure 7.2.1.5.7-1 shows the procedure for updating SD Relationship Triples when the descriptor attribute of a
<semanticDescriptor> resource is changed. For example, the descriptor of the sd1 resource created earlier is changed to
have two SD Original Triples (Old one - "S1 P1 O1"; New one - "S2 P2 O2").

The following steps shall be performed:

• Step 1: The Originator sends a request to update the resource sd1's descriptor to include one new SD Original
Triple (i.e. "S2 P2 O2"). The URI of the resource sd1 (i.e. sd1URI) is also contained in this request.

• Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting CSE updates sd1's descriptor
attribute by adding one new SD Original Triple (i.e. "S2 P2 O2").

• Step 3: The Hosting CSE sends a response back to the Originator to inform it if the request in Step 1 is
successful or not.

• Step 4: The Hosting CSE generates new SD Relationship Triples below to reflect this change:

- In our example:

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 52 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

sd:tripleInstance12 rdf:type sd:atomDescription.
sd:tripleInstance12 sd:describedIn sd:sd1.
sd:tripleInstance12 sd:hasSubject sd:S2.
sd:tripleInstance12 sd:hasProperty sd:P2.
sd:tripleInstance12 sd:hasObject sd:O2.

• Step 5: The Hosting CSE sends an SPARQL request to replace old SD Relationship Triples and/or add new
SD Relationship Triple in the SGS with the new SD Relationship Triple generated in above Step 4. This
SPARQL request for this example is shown below:

@PREFIX acp: <http://accessControlPolicy.org>.
@PREFIX sd: <http://semanticDescriptor.org>.

INSERT DATA
{ sd:tripleInstance12 rdf:type sd:atomDescription.
 sd:tripleInstance12 sd:describedIn sd:sd1 .
 sd:tripleInstance12 sd:hasSubject sd:S2 .
 sd:tripleInstance12 sd:hasProperty sd:P2 .
 sd:tripleInstance12 sd:hasObject sd:O2 .
}

• Step 6: The SGS processes the SPARQL request and adds new SD Relationship Triples.

• Step 7: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 5 is
successfully performed.

NOTE: If an old SD Original Triple is removed or updated by a new SD Original Triple, the corresponding SD
Relationship Triples related to this old SD Original Triple will be removed from the SGS.

The update of triples in the descriptor attribute may be performed also by targeting the semanticOpExec attribute of the
<semanticDescriptor> parent resource with a SPARQL query; when this SPARQL query is executed, new SD
Original Triples may be added to the descriptor attribute of the <semanticDescriptor> resource. In this case Steps 4 - 7
will be performed. More specifically, SPARQL Update consists of DELETE and ADD operations, so the SD
relationship triples associated with the old original triples will be deleted, and the new ones stored.

Hosting CSEOriginator SGS

1. Update descriptor attribute of a
<semanticDescriptor> resource

2. Update the descriptor attribute and SD
Original triples

3. Response

7. Response

6. Process the SPARQL request, update
triples

4. Generate new SD Relationship Triples

5. SPARQL request to update SD Original triples, SD
Relationship Triples

Figure 7.2.1.5.7-1: Procedure for updating SD relationship triples in the SGS

7.2.1.5.8 Procedure for deleting SD relationship triples and ACP-SD binding triples in SGS

Figure 7.2.1.5.8-1 shows a procedure for deleting SD Relationship Triples and ACP-SD Binding Triples from the SGS,
which could be triggered by the Initiating AE/CSE or the Hosting CSE to delete a <semanticDescriptor> resource. For
example, the sd1 resource created earlier is removed.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 53 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The following steps shall be performed.

• Step 1: The Originator sends "Delete <semanticDescriptor> Resource" to the Hosting CSE to delete sd1
resource. The URI of sd1 resource (i.e. sd1URI) is contained in this request.

• Step 2: The Hosting CSE deletes sd1 resource locally.

• Step 3: The Hosting CSE sends a response to the Originator to inform it if the deletion request in Step 1 is
successful.

• Step 4: The Hosting CSE sends an SPARQL request to the SGS to remove SD Relationship Triples and ACP-
SD Binding Triples related to sd1 resource. The SPARQL will look like:

@PREFIX acp: <http://accessControlPolicy.org>.
@PREFIX sd: <http:semanticDescriptor.org>.

DELETE
{ ?sd ?p ?o
 ?tripleInstance ?p1 ?o1
 ?acp acp:AppliedTo ?sd
}

WHERE
{
?sd ?p ?o.
?tripleInstance ?p1 ?o1.
?tripleInstance sd:describedIn ?sd .
?acp acp:AppliedTo ?sd
FILTER (?sd = sd:sd1)
}

• Step 5: The SGS processes the SPARQL request in Step 4 and removes corresponding SD Relationship
Triples and ACP-SD Binding Triples.

• Step 6: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 4 is
successfully performed.

NOTE: Steps 4 - 6 will also be performed if a SPARQL query targeting the semanticOpExec attribute of a
<semanticDescriptor> resource results in the deletion of existing SD Original Triples.

Hosting CSEOriginator SGS

1. Delete <semanticDescriptor> Resource

2. Delete <semanticDescriptor> Resource

3. Response

6. Response

5. Process the SPARQL request and
remove triples

4. SPARQL request to remove SD Original Triples, SD
Relationship Triple and ACP-SD Binding Triples

Figure 7.2.1.5.8-1: Procedure for deleting SD relationship triples and
ACP-SD binding triples from the SGS

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 54 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.3 Semantics Annotation
Semantics annotation is defined as the process to add semantic content (i.e. <semanticDescriptor>) to an oneM2M
resource (not a <semanticDescriptor> resource) as its child resource. This <semanticDescriptor> child resource
provides additional semantic information about the oneM2M resource. An AE or a CSE shall use the procedures
specified in clause 6.1.2 "Create <semanticDescriptor>" to add <semanticDescriptor> child resource to an oneM2M
resource to fulfill the semantics annotation. In addition, the AE or the CSE can also use the procedures specified in
clause 6.1.4 "Update <semanticDescriptor>" to update an existing <semanticDescriptor> and in turn update semantics
annotation. Semantics annotation can be conducted for a single data item (e.g. create a <semanticDescriptor> child
resource for a <contentInstance> resource); it can be also conducted for multiple data items or a data flow (e.g. create
<semanticDescriptor> child resource for a <container> resource).

7.4 Semantic Filtering and Discovery

7.4.1 Introduction
NOTE: In the following descriptions, the general term semantic resource is used to refer to

<semanticDescriptor> resources and <contentInstance> resources containing semantic information.

This clause describes semantic discovery procedures on semantic descriptions represented as RDF triples, given that an
overall semantic description (logical tree) may be distributed across several semantic resources.

Semantic discovery procedures may be performed using RETRIEVE operations as follows:

Using <semanticFanOutPoint> resource

Targeting any resource other than <semanticFanOutPoint>:

• The receiver begins processing the request by retrieving the <semanticDescriptor> resource of the request
target and its descriptor attribute. Related semantic resources are discovered and accessed according to
clause 7.4.2 or clause 7.4.3. The content of related descriptor attributes in the case of <semanticDescriptor>
resources or content attributes in the case of <contentInstance> resources are added to the content on which
the SPARQL request is being executed. Depending on which of the options described in clauses 7.4.2 or 7.4.3
is chosen, all potentially relevant semantic content is added before executing the SPARQL request or they are
added when needed during the execution of the SPARQL request.

• The resulting content subject to the SPARQL request is provided to the SPARQL engine for processing.

Targeting a <semanticFanOutPoint> resource (see also clause 10.2.7.12 in oneM2M TS-0001 [1]):

• In this case the related semantic resources are the members of the <group> resource parent of the targeted
<semanticFanOutPoint>. Based on the memberID attribute of the parent <group> resource all the related
descriptors are discovered, and those on the <group> hosting CSE are retrieved together.

• If there are semantic resources stored on a different CSE, individual RETRIEVE requests are sent to each
CSE for retrieving the external resources.

• All semantic resources are retrieved based on the respective access control policies.

• Once all of the related semantic resources have been accessed, the content of each semantic attribute is added
to the content on which the SPARQL request is being executed.

• The full/enlarged content subject to the SPARQL request is provided to the SPARQL engine for processing.

Not using <semanticFanOutPoint> resource

Given that an overall semantic description (logical tree) may be distributed across the semantic resources, there are two
methods of constructing the logical tree in the scope of a semantic discovery targeting any resource other than
<semanticFanOutPoint>:

• If the attribute relatedSemantics is empty or does not exist, the "Annotation-based method" (using
resourceDescriptorLink) detailed in clause 7.4.2 shall be used.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 55 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• If the attribute relatedSemantics is not empty the "Resource link-based method" (using relatedSemantics)
detailed in clause 7.4.3 shall be used.

7.4.2 Annotation-based semantic discovery method
In this option, the links to related <semanticDescriptor> semantic resources are encoded in the semantic description
itself, which is encoded as RDF triples [6] logically structured as <subject> <predicate> <object>. For this purpose, an
annotation property called onem2m:resourceDescriptorLink is introduced. It is formally specified as part of the
oneM2M Base Ontology defined in [7] and can be used as a predicate in any RDF triple with any subject and without
further relation to the oneM2M Base Ontology. Only the use of the onem2m namespace is required to uniquely identify
the annotation property.

Whenever further information about a semantic instance <X> is stored in another semantic resource, a new RDF triple
<X> onem2m:resourceDescriptorLink <ResourceURL> may be added to this semantic description, where
<ResourceURL> is the URL of the other semantic resource containing additional information related to <X>. If
multiple <semanticDescriptor> resources contain relevant further information, these can be added to a <group>
resource and the <ResourceURL> then refers to the virtual <fanOutPoint> resource of this group, which will be used
for retrieving the aggregated information.

NOTE: The RDF triple syntax in this paragraph is only used for illustration purposes. The actual encoding of the
RDF triples used in oneM2M is defined in oneM2M TS-0004 [3].

To make use of the onem2m:resourceDescriptorLink property, the evaluation of semantic queries formulated as
SPARQL requests by the SPARQL engine has to be adapted in the following way:

• The SPARQL request is executed on the content of the semantic description in the descriptor attribute of the
semanticDescriptor resource.

• For each semantic instance matched in the SPARQL request, it is checked whether one or more
onem2m:resourceDescriptorLink annotations exist.

• If this is the case, the execution of the SPARQL request is halted.

• The semantic content of the semantic resource referenced by the onem2m:semanticDescriptorLink annotations
is added to the content on which the SPARQL request is being executed. If the
onem2m:semanticDescriptorLink annotation references a group, the additional semantic content is accessed by
performing a retrieve request to the virtual <fanOutPoint> resource referenced.

• The execution of the SPARQL request is continued on the enlarged content.

7.4.3 Resource link-based method
In this option, the links to related semantic resources are specified in the relatedSemantics attribute.

Processing of the SPARQL engine procedures at the receiver :

• The receiver retrieves the <semanticDescriptor> resource of the request target.

• Based on the relatedSemantics attribute of the <semanticDescriptor> resource targeted, all the related
semantic resources are discovered, as follows:

1) If the relatedSemantics attribute includes a list of links, each of the linked semantic resources are
accessed based on the respective access control policies.

2) If the relatedSemantics points to a <group> resource, the group members from the memberID attribute
are used and each of them is accessed based on the respective access control policies.

• Once all of the related semantic resources have been accessed, the content of each of the descriptor attribute is
added to the content on which the SPARQL request is being executed.

• The full/enlarged content subject to the SPARQL request is provided to the SPARQL engine for processing.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 56 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.5 Semantic Queries and Query Scope
NOTE: In the following descriptions, the general term semantic resource is used to refer to

<semanticDescriptor>, <ontology> resources, <contentInstance> resource containing semantic triples,
and any other future resources containing semantic information (e.g. semantic content resources, etc.).

This clause describes semantic query procedures on semantic descriptions represented as RDF triples, given that an
overall semantic description (i.e. a logical tree) may be distributed across several semantic resources.

In general, semantic queries enable the retrieval of both explicitly and implicitly derived information based on syntactic,
semantic and structural information contained in data (such as RDF data). The result of a semantic query is the semantic
information/knowledge for answering/matching the query. By comparison, the result of a semantic resource discovery
is a list of identified resource URIs. Detailed comparison aspects between semantic query and semantic resource
discovery are listed in table 7.5-1.

Table 7.5-1: Comparison between semantic query and semantic resource discovery

Aspects Semantic Query Semantic Resource Discovery
Objective The objective of Semantic Query is extracting "useful

knowledge" over a set of "RDF data basis".
Semantic resource discovery is targeted to
discovery of resources for further resource
use (e.g. CRUD operations).

Technical Focus Semantic Query is a more advanced feature
leveraging semantics to derive knowledge from
distributed semantic descriptors, based on a query
statement.

Semantic resource discovery is a
resource-oriented feature to leveraging
semantics to enable sophisticated
resource discovery.

Result The semantic query result (representing the derived
"knowledge") is provided as semantic information to
answer the query not limited to resources URIs.

The processed result of a semantic
resource discovery is mainly to include a
list of identified resource URIs.

A complete semantic query operation shall include the following steps:

• Step 1: The Originator shall be given or form a semantic query statement (i.e. using SPARQL) based on its
needs.

• Step 2: The Originator shall form a RETRIEVE request including the semantic query statement in the
semanticsFilter condition and shall set the "Semantic Query Indicator" parameter to "TRUE". The Originator
shall send the RETRIEVE request to a Receiver.

• Step 3: The Receiver shall execute the semantic query statement contained in the received semantic query
request, for which the following information shall be required: a) the semantic query statement which is
received from the Originator; and b) the RDF data basis. The RDF data basis is composed of all the RDF
triples in scope of the semantic query. The RDF data basis may be distributed in the resource tree and stored in
different semantic resources. Therefore, the Receiver shall perform Semantic Graph Scoping (SGS) which is
the process of establishing the "query scope", i.e. RDF data basis. An illustration of SGS is shown in
Figure 7.5-1 and with two approaches described later.

• Step 4: Once the RDF data basis is determined through the SGS process, the Receiver shall apply the semantic
query statement to the RDF data basis, yielding the semantic query result.

• Step 5: The semantic query result shall be included in a response message and returned to the Originator.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 57 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

... ...

oneM2M Normal Resource

oneM2M <semanticDescriptor> Resource

RDF
Data Basis

SD_n

SD_1

SD_1 SD_2 SD_3

SD_2

SD_3

Semantic Graph
Scoping (SGS)

A SPARQL Query
Statement

Executed on Returns

Figure 7.5-1: An Illustration of SGS in oneM2M Architecture

The following two approaches may be used for the SGS process in Step 3 above, in order to decide the semantic query
scope of the semantic query:

Approach-1: The scope of the semantic query is provided implicitly.

In Approach-1, a semantic query request message targets any resource (i.e. as specified by the "To" parameter) and the
semantic query shall be executed relative to this target resource, similarly to other request messages. The scope of the
semantic query is formed through the aggregation of the semantic contents of the target resource's descendants. All the
contents of semantic resource descendants of the target resource shall form the RDF data basis for this semantic query
to be executed on. Thus, by targeting a oneM2M regular resource in the resource tree, the scope of the semantic query is
implicitly decided as discussed above.

Approach-2: The scope of the semantic query is provided explicitly.

In Approach-2 the relevant semantic resources are the members of a <group> resource. The scope of the semantic
query is formed through the aggregation of the semantic contents of all the group members. In this approach, the request
targets the <semanticFanOutPoint> (as specified by the "To" parameter), i.e., the child resources of the <group>
resource. As a result, this <group> resource explicitly specifies the RDF data basis of the semantic query (i.e. the scope
is explicitly defined by the semantic resources which are the members of the <group> resource).

When the semantic query scope is explicitly defined by the <group> resource, the processing stage can be decoupled
from the SGS process. For example, without processing any semantic query, the Receiver (e.g. a CSE) may proactively
aggregate relevant semantic resources together using a <group> resource. The Originator may first discover various
<group> resources and select the one with the desired RDF data basis, before launching a semantic query request. For
example, the <semanticDescriptor> child resource of <group-1> resource may indicate that this group resource
includes all the devices deployed in Building-1. The Originator, whose query is to be limited to Building-1, may then
send its semantic query request to the <semanticFanOutPoint> child resource of the <group-1> resource.

In Approach-2, the SGS processing (included in step 3 above of the sematic query flow) shall include the following
steps:

• The Receiver of the semantic query request targeting a <semanticFanOutPoint> resource shall use the
memberIDs attribute of the parent <group> resource to retrieve all the related semantic information. If there
are descriptors stored on different CSEs, individual RETRIEVE requests are sent to each CSE for retrieving
the semantic information from the external resources.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 58 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• All semantic resources are accessed based on the respective access control policies. The
<semanticFanOutPoint> resource uses membersAccessControlPolicyIDs attribute in the parent <group>
resource for access control policy validation.

• Once all of the related semantic information has been retrieved (which forms the RDF data basis for this
semantic query), the SPARQL query statement will be executed on the collected RDF data basis in order to
provide the semantic query result.

The RETRIVE operation targeting a <semanticFanOutPoint> for semantic queries is detailed in clause 6.2.2.

7.6 Content-related Semantic Resource Discovery and
Semantic Query

This clause describes the functionality supporting content-related semantic resource discovery and semantic query
operations, where the SPARQL query statements pertain also to data content stored in <contentInstance> resources. For
example:

• A semantic resource discovery with the content constraint: “Return URIs of sensors whose current temperature is
greater than 20”.

• A semantic query with the content constraint: “Return the locations of sensors whose current temperature is greater
than 20”.

These examples show that semantic resource discovery and semantic query need semantic representations of actual
content which enable a variety of entities in a system, including:

• Semantic-capable data creators who can directly describe its data in a semantic form such as RDF triples;

• Semantic-incapable data creators who only can produce raw data stored as opaque content in the content attribute of
the <contentInstance> resource and rely on other entities to add semantic annotations to the raw data;

• Semantic-capable data consumers who have the semantic resource discovery and/or semantic query capability;

• Semantic-incapable data consumers who only can retrieve raw data contents stored in the <contentInstance>
resource through pre-configurations.

In order to enable this capability, any information that is originally stored in the content attribute of a <contentInstance>
resource can also be represented as RDF triples and stored in certain <semanticDescriptor> resources (see [1] clause
9.6.7 for details). The opaque data in the content attribute of a <contentInstance> supports functionality for semantic-
incapable data creators and consumers. The semantic formats are provided to enable semantic-capable data creators and
consumers and their semantic functionality.

7.7 Semantics Mashup

7.7.1 Introduction
Existing semantic resource discovery in oneM2M can help in discovering various IoT devices and their data. However,
in many application scenarios, the discovered data needs to be further processed (e.g. integrated/orchestrated/combined)
based on a certain application business logic. For example, users may just be interested in a metric called "weather
comfortability index", which cannot be directly provided by physical sensors, and in fact can be calculated based on the
original sensory data collected from multiple types of physical sensors (e.g. temperature and humility sensors).

In general, the above process is called "Semantic Mashup", which is defined as a process to discover and collect data
from more than one source as inputs, conduct a kind of business logic-related mashup function over the collected
data, and eventually generate meaningful mashup results. In particular, semantic mashup emphasizes on leveraging
semantic-related technologies during the entire mashup process. For example, in the oneM2M context, an normal
resource (e.g. a <AE> resource representing a temperature sensor) may be annotated by semantic descriptions and then
they could be discovered and identified as a potential data source for a specific mashup application through the
semantic resource discovery.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 59 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The above definition also indicates a fact that a complete semantic mashup process may involve multiple stages and
multiple entities for each stage. Those entities include:

• Mashup Requestor (MR): The entity which initiates a mashup request to Semantic Mashup Function for a
certain need. In the context of oneM2M, an AE or a CSE can be an MR.

• Resource Host (RH): The entity which hosts data source(s) for a given mashup process. In the context of
oneM2M, a data source is typically represented by a oneM2M resource (e.g. a temperature <AE> resource)
and a RH will be a CSE that hosts oneM2M resources.

• Semantic Mashup Function (SMF): The entity which is responsible for collecting the data inputs from data
sources hosted on RHs and mashing them up to generate the mashup result based on a certain business logic.
In the context of oneM2M, SMF is a Common Service Function.

7.7.2 Semantic Mashup Function (SMF) Description

7.7.2.1 Introduction

Semantic mashup function including high-level architecture and high-level operations will be described in this clause.

7.7.2.2 High-level architecture

The high-level architecture of an SMF is shown in Figure 7.7.2.2-1, which shall contain the following components:

• Semantic Mashup Job Profile (SMJP): Each specific semantic mashup application has a corresponding
SMJP, which not only provides functionality/interaction details for external entities to discover (e.g. MRs), but
also defines the internal working details regarding how to realize this mashup application (e.g. the criteria of
how to select the qualified data sources as well as the definition of mashup function). The content of an SMJP
has been defined in the clause 9.6.53 in oneM2M TS-0001 [1].

• Semantic Mashup Instance (SMI): Once an MR identifies a desired SMJP (which can be analogous to a "job
description", but not a real job), it can ask SMF to initialize a real mashup process, which corresponds to a
"working instance" of this SMJP and is referred to as a Semantic Mashup Instance (SMI). In order to do so, the
SMF will inject the corresponding SMJP into the Mashup Engine of SMF for the SMI instantiation, during
which the engine may be involved in: 1) Identifying the qualified data sources according to the data source
criteria as defined in the SMJP; 2) Collecting data inputs from those identified data sources; 3) Mashing up the
collected inputs by applying mashup functions as defined in the SMJP, and finally deriving the mashup result.
The content of an SMI has been defined in the clause 9.6.54 in oneM2M TS-0001 [1].

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 60 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

SMF: Semantic Mashup Function
SMJP: Semantic Mashup Job Profile
SMI: Semantic Mashup Instance
MR: Mashup Requestor

Semantic Mashup Job
Profile (SMJP) Library

Semantic Mashup
Function (SMF)

Functionality:
// Finding Suitable Parking Spot (Human Understandable Description)
smp-001 is-a ex:smartParkingAssistance

Input Needed from MR:
ex:MRInput1 is-a ex:currentVehiclePosition
ex:MRInput2 is-a ex:destination (e.g., Building A)
ex:MRInput3 is-a ex:parkingPreference

Output (Mashup Result):
ex:output1 is-a ex:parkingSpotID
ex:output2 is-a ex:parkingSpotPosition

Data Sources Criteria/Filter:

//Data Source Type-1:
ex:source1 is-a ex:parkingSpotInParkingBuilding
ex:source1 is-close-to ex:MRInput2 (i.e., MR’s destination)

//Data Source Type-2:
ex:source2 is-a ex:streetParkingSpot
ex:source2 is-close-to ex:MRInput2 (i.e., MR’s destination)

Mashup Function:

ex:function1 is-a ex:cheapestCostBasedSpotSelectionAlgorithm (default)
ex:function2 is-a ex:parkingPreferenceBasedSpotSelectionAlgorithm

SMJP- 001 (smpID)
(Smart Parking Assistance)

SMP Semantic Description
Utility or
Runnable

Code Block

SMJP - 002
SMJP - 001

SMI - 001

smjpID:
 SMJP-001

Identified Data
Sources Mashup Result

SMJP- 002
(Shopping Guidance Application)

…..

 Identified Data Sources

Source 1: Parking Spots in Building XX,
Source 2: Parking Spots in Building YY
Source 3: Parking Spots on Main Street …
Source 4: Parking Spots on 5th Avenue
…..

SMJP Reference

Injected
into

Triggered by MR-1

Triggered by MR-2

Example

Example

 Mashup Result

Suitable Parking Spot ID: Parking Spot-16
Position: Parking Building XX, 1st floor, 3rd Row

Mashup
Engine

SMI
Instantiation

& Management

SMI - 003
smjpID:

 SMP-001

SMI - 002
smjpID:

 SMP-002

Semantic Mashup
Instance (SMI) - 001

smjpID:
 SMP-001

 SMJP Semantic Description (RDF Triples)

Figure 7.7.2.2-1: High-level architecture of Semantic Mashup Function

7.7.2.3 High-level operations

An SMF as introduced in clause 7.7.2.2 may involve in different tasks/operations for realizing a complete semantic
mashup process. This clause is to introduce those major SMF operations. The high-level SMF operations are shown in
Figure 7.7.2.3-1, where each operation shall be realized using CRUD operations as specified in the clauses 6.2.2, 6.3.2,
6.4.2 and 6.5.2, respectively:

• Operation 1 - SMJP Discovery: This process is needed when an MR (e.g. MR-1 in Figure 7.7.2.3-1) tries to
discover a desired SMJP for its need. The procedure defined in the clause 6.3.3 for retrieving a
<semanticMashupJobProfile> shall be leveraged for discovering <semanticMashupJobProfile> resources
based on resource discovery procedures as defined in oneM2M TS-0001 [1].

• Operation 2 - SMI Creation: This process is needed when an MR already identified a desired
<semanticMashupJobProfile> resource, but there is no corresponding SMI available for use. To implement
this operation, an MR shall leverage the procedure defined in the clause 6.4.2 to send an SMI creation request
to the CSE hosting SMF in order to instantiate a new SMI (i.e. <semanticMashupInstance> resource) for the
desired SMJP. Alternatively, the SMF can also create a new SMI by itself instead of being triggered by the
SMI creation request from the MR.

• Operation 3 - Mashup Member Identification: This process is needed when an SMF tries to identify the
qualified mashup members (i.e., data sources) for a given SMI, by referring to the criteria as defined in the
corresponding SMJP of this SMI (i.e. the memberFilter attribute of a <semanticMashupJobProfile> resource).
Since in the oneM2M context, data sources (such as sensors) are normally represented as oneM2M resources
hosted by RHs, this operation shall be implemented using semantic resource discovery mechanism as defined
in clause 7.4.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 61 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• Operation 4 - Mashup Result Retrieval: This process is needed when an MR tries to retrieve the mashup
result from a specific SMI. For a given SMI, it may involve in multiple rounds for mashup result generation
especially when the mashup result needs to be refreshed periodically. For each round, the SMF shall collect
new data inputs from identified mashup members (via Operation 5) and generate new mashup result which
will be stored in the child resource <semanticMashupResult> of corresponding <semanticMashupInstance>
resource. There are several alternatives for generating semantic mashup results as defined by the
resultGenType attribute of an <semanticMashupInstance> resource in the clause 9.6.54 in oneM2M TS-0001
[1], for example:

- Option 1: After an SMI is created, the SMF proactively and periodically runs the mashup result
generation; each time before generating new mashup result, the SMF shall use Operation 5 to collect data
inputs from mashup members. Whenever a new mashup result becomes available, it shall be stored in a
<semanticMashupResult> resource and be exposed to MRs for access.

- Option 2: The SMF shall generate mashup result only after receiving an explicit request from an MR
(i.e. using the procedure defined in the clause 6.5.2). The benefit of this approach is that SMF works in
an on-demand way, which may reduce overhead as compared to Option 1. However, the downside is that
it leads to longer waiting time for an MR before the up-to-date mashup result becomes available because
data re-collection and mashup result generation will not be triggered until the SMF receives a request
from the MR.

• Operation 5 - Data Input Collection and Mashup Result Generation: This process is needed when an SMF
tries to generate a mashup result for a given SMI. Note that Operation 3 focuses on how to identify the
mashup members while Operation 5 focuses on how to collect data inputs from those identified/qualified
mashup members. Operation 5 shall be implemented using resource retrieval mechanism as defined in
oneM2M TS-0001 [1]. In addition, the working mechanism used for Operation 4 as mentioned above will
affect how Operation 5 is conducted by the SMF.

• Operation 6 - SMI Discovery and Re-use: An SMI can be discovered, re-used and shared among different
MRs. For example, the same SMI of a weather reporting mashup application for New York City Area can be
shared by different users asking weather information for this area. Accordingly, Operation 6 is needed when an
MR (e.g. MR-2 in Figure 7.7.2.3-1) tries to discover whether there is already an available/desired SMI ready
for use. Since a given SMI is exposed as a <semanticMashupInstance> resource, existing resource discovery
mechanism in oneM2M TS-0001 [1] shall be leveraged to discover a desired SMI from the Hosting CSE. This
approach leads to less processing overhead, since other MRs do not need to require the SMF to generate a new
SMI (therefore Operation 2 and 3 are not needed).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 62 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Semantic Mashup Job
Profile (SMJP) Library

SMJP

Injected
into

Mashup
Engine

SMI
instantiation

& Management

Source-1

Resource Hosts
(RH)

Source-2Source-3

...

SMJP
SMP Semantic

Description
Data Sources

& Business Logic

Semantic Mashup Instance (SMI)
smjpID Identified Data

Sources
Mashup
Result

Mashup
Requestor-1

 (MR-1)

Semantic Mashup Function (SMF)

Source-N

Operation 1: SMJP
Discovery

Operation 2:
SMI Creation

Operation 3: Mashup
Member Identification

Operation 4:
Mashup Result

Retrieval

Operation 5: Data Input
Collection and Mashup Result

Generation

Mashup
Requestor-2

 (MR-2)

Operation 6:
SMI Discovery

and Reuse

Figure 7.7.2.3-1: High-level operations for Semantic Mashup Function

7.8 Semantics-based Data Analytics
The procedures are not fully defined in this release.

7.9 Ontology Management
In general, the oneM2M system needs to represent knowledge as a hierarchy of concepts (ontologies), either external or
internal to the oneM2M domain, using a shared vocabulary to denote the classes, properties and interrelationships of
those concepts. Storage, discovery and management of ontologies (including both oneM2M Base Ontology and
external ontologies e.g. SSN [i.1], SAREF [i.2]) within the oneM2M platform are key for supporting basic and
advanced semantic functionalities within the oneM2M platform.

An ontology repository as represented by a <ontologyRepository> resource is capable of storing multiple ontologies in
the unified languages adopted by the oneM2M system, e.g. RDFS/OWL. Each of the ontology under management is
represented as an <ontology> resource in the oneM2M system. An <ontology> resource may contain the full
representation of an ontology or the IRI reference to it. SPARQL queries can be applied directly on the <ontology>
resource to perform semantic query and triple-level update.

An ontology repository may also provide the semantic validation service (see more in clause 7.10) via the
<semanticValidation> child virtual resource. The service is triggered by sending a UPDATE request that contains the
<semanticDescriptor> resource to be validated to the <sematnicValidation> virtual resource.

The resource type definitions of <ontologyRepository>, <ontology> and <semanticValidation> are specified in
oneM2M TS-0001 [1], while the corresponding resource procedures are specified in clause 6 of the present document.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 63 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.10 Semantic Validation

7.10.1 Introduction
The <semanticDescriptor> resource contains a descriptor attribute which can store any RDF triples as the semantic
description (i.e. annotation) of the associated resource (usually the parent resource of the <semanticDescriptor>). In the
same time, <semanticDescriptor> resource may also contain an ontologyRef attribute, which is a reference (URI) of the
ontology used to represent the information that is stored in the descriptor attribute. Normally, the triples stored in the
descriptor attribute should be compliant with the ontology referenced by the ontologyRef attribute. However, there is no
guarantee that an issuer (e.g. an AE) which creates or updates the <semanticDescriptor> will always provide the
consistent information. In case the semantic description (as triples in descriptor attribute) is not compliant with the
referenced ontology, it basically means the <semanticDescriptor> is not valid and cannot be used by the AE and/or
CSE properly e.g. for semantic query or reasoning.

To solve the potential inconsistency between the <semanticDescriptor> resources and the referenced ontology, two
message flows of semantic validation are specified in the following clauses.

7.10.2 Semantic validation independent of <semanticDescriptor> resource
operation

Figure 7.10.2-1: Message flow for semantic description validation independent
of <semanticDescriptor> resource operation

This flow can be used independent of <semanticDescriptor> resource operation. For example, an AE can validate a
<semanticDescriptor> resource after retrieving it from a hosting CSE, so as to ensure the validity of the RDF triples in
the retrieved resource before using it in the application layer process (e.g. reasoning). An AE or a CSE may also choose
to validate a <semanticDescriptor> resource representation before actually creating it in the oneM2M system.

This flow can also be used as a part of the semantic validation procedure during a <semanticDescriptor> resource
Create or Update operation as specified in clause 7.10.3.

Step 1. The Issuer (e.g. an AE or CSE) shall send a semantic validation request to the ontology hosting CSE of the
referenced ontology according to ontologyRef attribute of the <semanticDescriptor> resource to be validated. The
request shall be an Update request addressing the <semanticValidation> virtual resource of the ontology hosting CSE as
specified in oneM2M TS-0001 [1]. It shall contain the <semanticDescriptor> resource representation to be validated,
which includes the semantic description (descriptor attribute), the URI of the referenced ontology (ontologyRef
attribute) against which to validate, and potentially URIs (relatedSemantics attribute, or triples with annotation property
m2m:resourceDescriptorLink in the descriptor attribute) to other linked <semanticDescriptor> resources that are also
incorporated for validation.

Issuer Ontology hosting CSE

Linked <semanticDescriptor>
hosting CSE

1. request to validate a
<semanticDescriptor> resource

(Update <semanticValidation>)

2. retrieve linked
<semanticDescriptor>

3. validate
<semanticDescriptor>
against referenced ontology

4. validation response

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 64 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Step 2. After receiving the semantic validation request, the ontology hosting CSE shall retrieve any linked
<semanticDescriptor> resources (including the semantic description - descriptor and the URI of the referenced
ontology - ontologyRef) according to the relatedSemantics attribute and triples with annotation property
m2m:resourceDescriptorLink in the descriptor attribute of the <semanticDescriptor> resource in the request. In case
the linked <semanticDescriptor> resources are further linked to more <semanticDescriptor> resources, the ontology
hosting CSE shall repeat this step iteratively to retrieve all linked <semanticDescriptor> resources. In case the ontology
hosting CSE cannot retrieve the linked <semanticDescriptor> resources (due to access right control or other
exceptional reasons) within a reasonable time (according to local policy), skip Step 3.

Step 3. The ontology hosting CSE shall use the referenced ontologies (indicated by the ontologyRef attribute) of the
received <semanticDescriptor> resource and the linked <semanticDescriptor> resources to validate the semantic
description of the received <semanticDescriptor> resource and the linked <semanticDescriptor> resources all
together. The aspects to be checked in semantic validation is specified in clause 7.10.4.

Step 4. The ontology hosting CSE shall return the validation response to the Issuer. In case Step 3 succeeds, the
response code shall indicate success of validation, otherwise (including Step 3 is skipped due to Step 2 fails), the
response shall indicate failure of validation.

7.10.3 Semantic validation triggered when Create or Update a
<semanticDescriptor> resource

Figure 7.10.3-1: Message flow for semantic description validation triggered
by <semanticDescriptor> resource Create/Update

<semanticDescriptor>
hosting CSE

Ontology hosting
CSE

Linked <semanticDescriptor>
hosting CSE

3b. request to validate
<semanticDescriptor>

(by Update <semanticValidation>)

4b. retrieve linked
<semanticDescriptor>

5b. validate
<semanticDescriptor>
against referenced ontology

6b. validation response

7. <semanticDescriptor>
validation status update

8. response

3a. retrieve referenced ontology

4a. validate
<semanticDescriptor>
against referenced
ontology

2. check linked
<semanticDescriptor>

CASE1

CASE2

Issuer

1. Create/Update
<semanticDescriptor>

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 65 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Step 1. The issuer shall send a Create or Update request to the hosting CSE of a <semanticDescriptor> resource (called
<semanticDescriptor> hosting CSE). The request shall contain the <semanticDescriptor> resource representation,
which includes a validationEnable attribute (set to 'true') to trigger the semantic validation process, the semantic
description (descriptor attribute), the URI of the referenced ontology (ontologyRef attribute) against which to validate,
and potentially URIs (relatedSemantics attribute, or triples with annotation property m2m:resourceDescriptorLink in
the descriptor attribute) to other linked <semanticDescriptor> resources that are also incorporated for validation.

Step 2. After receiving the request, the <semanticDescriptor> hosting CSE shall firstly check if semantic validation is
needed according to the value of the validationEnable attribute. If true, it shall further check if the addressed
<semanticDescriptor> resource is linked to any other remote <semanticDescriptor> resources according to the URIs in
the relatedSemantics attribute or triples with annotation property m2m:resourceDescriptorLink in descriptor attribute. If
no, the procedure goes to Case 1 (Step 3a to 4a), otherwise, goes to Case 2 (Step 3b to 6b).

NOTE: The <semanticDescriptor> hosting CSE may override the value of the validationEnable attribute
according to its local policy so as to enforce or disable the following semantic validation procedures
regardless of the requested value from the issuer.

Case 1: stand-alone <semanticDescriptor>

Step 3a. The <semanticDescriptor> hosting CSE shall retrieve the referenced ontology representation according to the
URI in the ontologyRef attribute of the addressed <semanticDescriptor> resource from the ontology hosting CSE
(which hosts the referenced ontology). In case the ontology representation cannot be retrieved (due to access right
control or other exceptional reasons), skip Step 4a.

Step 4a. The <semanticDescriptor> hosting CSE shall use the retrieved referenced ontology to validation the semantic
description (the triples in descriptor attribute) of the addressed <semanticDescriptor> resource. The aspects to be
checked in semantic validation is specified in clause 7.10.4.

Case 2: linked <semanticDescriptor>

Step 3b. This step shall follow Step 1 of figure 7.10.2-1, wherein the <semanticDescriptor> hosting CSE shall act as
the Issuer and the <semanticDescriptor> resource to be validated is the addressed <semanticDescriptor> resource in
the received Create or Update request.

Step 4b. This step shall follow Step 2 of figure 7.10.2-1.

Step 5b. This step shall follow Step 3 of figure 7.10.2-1.

Step 6b. This step shall follow Step 4 of figure 7.10.2-1, wherein the response is sent to the <semanticDescriptor>
hosting CSE.

Step 7. The <semanticDescriptor> hosting CSE shall perform the normal operation (Create or Update) on the
addressed <semanticDescriptor> resource according to the original request from the issuer. In addition, based on the
validation result of Step 4a (in Case 1) or the validation response received in Step 6b (in Case 2), The
<semanticDescriptor> hosting CSE shall update the semanticValidated attribute properly to reflect the validation status
(validated or not) of the addressed <semanticDescriptor> resource accordingly. If Step 4a is skipped due to Step 3a
fails, it's also considered as not validated.

Step 8. The <semanticDescriptor> hosting CSE shall return the operation (Create or Update) response to the issuer.

7.10.4 Aspects to be checked in semantic validation
Several aspects shall to be checked in order to make sure that the content of descriptor attribute of
<semanticDescriptor> resource consists of valid RDF triples and they are indeed capable of interoperating semantically
with other oneM2M resources. Taking into account the nature of semantically annotated data, three levels of validation
can be distinguished:

1) Lexical check. This level of check consists of verifying the correctness of RDF serialization regarding to the
declared type. For example, the <semanticDescriptor> resource is marked in XML representation (according
to the descriptorRepresentation attribute) whereas the semantic annotation (in the descriptor attribute) is
indeed serialized in JSON, or the XML document contains some error that causes parse error, the lexical check
fails.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 66 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

2) Syntactic checks. After the basic lexical checks, the syntactic check consists of verifying the correctness of
the "syntax" of the RDF triples represented by the underlined serialization format, more specifically:

a) Untyped of resources and literals. Here resource refers to instances of a class, and literal refers to a
textual or numerical value. The type of resource or literal is the link of an annotation back to the
ontology which enables the semantic capabilities. Any un-typed element presented in an annotation is
problematic towards the semantic interoperability.

b) Ill-formed URIs. URI is essential and critical for identification of a resource. They shall be checked
against RFC3968 which defines the generic syntax of URI.

c) Problematic prefix and namespaces. Namespaces play the role of linking the annotation to the
reference ontologies and vocabularies, and it shall be consistent with ontologyRef attribute. If the URI of
the namespace is problematic (e.g. wrong URI, URI contains illegal character), it may cause others to
mis-interpret the data semantics and types. Prefix is a unique reference to replace the namespaces in the
local file. A one-to-one mapping between the prefix and namespace is essential and shall be checked to
ensure a correct reference.

d) Unknown classes and properties. A prerequisite of semantic interoperability is that all the resources
use a common and agreed vocabulary. As consequence, if any resource uses in its annotation a class or
property that is not defined in the reference ontology(ies), other resources would have no way to
understand it, so that the semantic interoperability is impossible.

3) Semantic checks. Following a successful syntactic validation, the semantic check consists of verifying the
logical consistence of the semantic annotation regarding to the reference ontology(ies):

a) Cardinality inconsistency:

i) Inconsistency of object properties. If the ontology defines that class A has an object property that
can have one and only one instance of class B, and in the annotation, there are two instances of B
related to one instance of A, there is a problem.

ii) Inconsistency of data properties. If the ontology defines that class A has a data property that can
have one and only one data value, and in the annotation, there are two instances of the data
properties of different value, there is a problem.

b) Problematic relationship or inheritance. Following the relationship defined in the reference ontology,
if an instance of a class A is wrongly annotated to be at same time an instance of class B which is disjoint
from class A, there is a conflict and the instance cannot be resolved by the semantic engine. A concrete
example in detailed in clause 8.3.1 in oneM2M TR-0033 [i.3].

c) Remaining dependencies. If deleting a property of an instance of a class for which this property is
mandatory, there is a problem.

The validation response returned to the issuer depends on the result of each of the above tests. To conclude that an
annotation is validated, a complete check of all the above checks shall to be performed and passed. However, as several
tests are independent from others (for example, 3.a and 3.b do not have an impact on each other), several "validated
profiles" may be defined as a subset of all the aspects to be checked.

7.11 Semantics Reasoning
Semantic reasoning is a mechanism to derive implicit facts that are not explicitly expressed in the existing
knowledge/facts (such as RDF triples) by leveraging a set of reasoning rules. A Semantic Reasoning Function (SRF) is
defined in this clause in order to support semantic reasoning functionality in the oneM2M system. The key features of a
SRF are shown in Figure 7.11-1:

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 67 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Semantic
Reasoner
Semantic
Reasoner

Fact Set (FS)
(e.g., data stored in <ontology>,

<semanticDescriptor>)

Fact Set (FS)
(e.g., data stored in <ontology>,

<semanticDescriptor>)

Reasoning Rule
Set (RS)

Reasoning Rule
Set (RS)

input input

produces

Other oneM2M
Semantic Functions

(such as semantic query/discovery)
…

Other oneM2M
Semantic Functions

(such as semantic query/discovery)
…

optimize

oneM2M Semantic Reasoning Related Data

Reasoning ResultsReasoning Results

Semantic Reasoning Function (SRF)

oneM2M Users
(AEs/CSEs)

discover, publish/
share, utilize

trigger

trigger
further utilize

enrich/
augment

Figure 7.11-1: Key Features of Semantic Reasoning Function (SRF)

Feature-1: Enabling semantic reasoning related data

The major functionality of Feature-1 is to enable the semantic reasoning related data (referring to facts and reasoning
rules) by be discoverable and publishable/sharable across different entities in the oneM2M system (which is illustrated
as the dark yellow arrow in the Figure 7.11-1). The semantic reasoning related data can be a Fact Set (FS) and/or a Rule
Set (RS):

• A FS refers to a set of facts. For example, a set of RDF triples stored in a <semanticDescriptor>
resource can be regarded as a FS. In general, a FS can be used as an input for a semantic reasoning
process (i.e. an input FS) or it can be a set of inferred facts as the result of a semantic reasoning
process (i.e. an inferred FS).

• A RS refers to a set of semantic reasoning rules. For example, oneM2M applications may define their
own reasoning rules (user-defined reasoning rules) for different application needs.

Overall, Feature-1 involves the publishing/discovering/sharing of semantic reasoning related data (including both FSs
and RSs) through appropriate oneM2M resources. The general flow of Feature-1 is that oneM2M users (as originators)
can send requests to certain receiver CSEs in order to publish/discover/update/delete the FS/RS-related resources
through the corresponding CRUD operations. Once the processing is done, the receiver CSE will send the response
back to the originator.

Feature-2: Optimizing other semantic operations with background semantic reasoning support

The existing semantic operations supported in the oneM2M system (e.g., semantic resource discovery and semantic
query) may not yield desired results without semantic reasoning support. The major functionality of Feature-2 of SRF is
to leverage semantic reasoning as a “background support” function to optimize other semantic operations (which are
illustrated by the pink arrows in the Figure 7.11-1). In this case, users trigger/initiate specific semantic operations (e.g.,
a semantic query). During the processing of this operation, semantic reasoning may be further triggered in the
background, which is however fully transparent to the user.

Overall, the general flow of Feature-2 is that oneM2M users (as originators) can send requests to certain receiver CSEs
for the desired semantic operations (such as semantic resource discovery, semantic query, etc.). During the request
processing, the receiver CSE, assuming it supports SRF, can further leverage the reasoning capability. In general, the
reasoning capability of the SRF is realized by an underlying semantic reasoner. By leveraging the outputs of semantic
reasoning (i.e., reasoning result), the receiver CSE will further produce the optimal result for the semantic operation as

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 68 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

requested by the originator (e.g., the semantic query result, or semantic discovery result) and then send the response
back to the originator.

Feature-3: Enabling individual semantic reasoning process

oneM2M users (as originators) may also directly interact with the SRF by triggering an individual semantic reasoning
process, which is Feature-3 of the SRF. When using this feature, a oneM2M user shall first identify the interested facts
(as input FS) as well as the desired reasoning rules based on their application needs. When the input FS and RS are
identified, the oneM2M user shall send a request to the SRF for triggering a specific semantic reasoning process by
specifying the inputs (i.e. the input FS and RS). The SRF will then initiate a desired semantic reasoning process. Once
the SRF works out the semantic reasoning result, it will be returned to the oneM2M users for further usage.

7.12 Ontology Mapping

7.12.1 Introduction
There are already many standardized or proprietary ontologies defined for various vertical domains or cross-domain
scenarios. Each ontology specifies the common vocabulary and relationships between concepts within its own
namespace, but may sometimes overlap conceptually with other ontologies due to the independent design. This is often
true if two ontologies are designed for the same knowledge domain or under a common high level domain. Different
terminologies may mean the same or similar concept (e.g. lamp vs. light), or one is the actually the sub-class of another
(e.g. device vs. thing).

To enable the semantic interoperability between different ontologies, ontology mapping is a prerequisite. It’s an
important ontology management method to identify the commonality, similarity as well as inclusion relationships
between ontologies, so that the data described in one ontology can be consumed meaningfully by the application who
understand only another ontology. Ontology mapping can also help to build a global knowledge base and enhance the
system intelligence by linking together a collection of ontologies via the anchors of equal/similar/inclusive concepts.

Ontology mapping can be implemented by either manual approaches or automatic approaches. For example, in Annex
B.1 of oneM2M TS-0012 [5], the ontology mapping between Base Ontology and SAREF is specified by manually
configured mapping rules (in the format of mapping tables) according to the experts’ common understanding on both
ontologies.

However, discovering proper mapping relationships manually is often too labour-intensive, error-prone, and impractical
for large ontologies, especially for non-standardized and unstable ones. Therefore, oneM2M provides automatic means
of ontology mapping to discover, create and save the mapped relationships between semantically related ontologies by
using industry-proven mapping algorithms, e.g. the edit distance, language-based similarity, structural-based similarity,
or external- resources-based similarity etc.

The solution is based on the <ontologyMapping> resource to configure the input parameters for executing the ontology
mapping task and to store the mapping result. Meanwhile, the <ontologyMappingAlgorithmRepository> resource and its
child resources <ontologyMappingAlgorithm> are used to host a collection of algorithms for automatic ontology
mapping that can be selected for individual ontology mapping tasks. The detailed procedures related to ontology
mapping are specified in clause 6.10, 6.11 and 6.12.

Based on the generated ontology mapping result contained in the <ontologyMapping> resource, semantically equivalent
operations such as semantic resource discovery and semantic query can be realized in multi-ontology scenarios as
specified in clause 7.12.2.

7.12.2 Semantic query and semantic resource discovery based on the
ontology mapping result

7.12.2.1 Introduction

Semantic query and semantic resource discovery operations can be enhanced by leveraging the ontology mapping result
stored in the <ontologyMapping> resource, so that an application which understands only one ontology (e.g. Ontology-
A) can get the resulting content or resource described in another (e.g. Ontology-B).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 69 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This feature requires the issuer to provide an additional request parameter - Ontology Mapping Resources as specified
in [1] in a normal semantic query and semantic resource discovery request. This request parameter contains a list of
resource identifiers of existing <ontologyMapping> resources that are used as the base of converting the query
statement or the semantic description of the target resources into their equivalents.

The following clause describes the detailed procedures using the example ontology mapping result in clause 6.10.2.

Note: There is no difference between the semantic query operation and the semantic resource discovery operation in
terms of applying the feature of ontology mapping in addition to the respective original procedures. So the following
procedures combine the two operations in to one message flow.

7.12.2.2 Procedures

Originator Hosting CSE <ontologyMapping>
Hosting CSE

1. Receive semantic query/ discovery with
query statment in Ontology-A and an
Ontology Mapping Resources parameter 2. Retrieve the ontology mapping result

between Ontolog-A and Ontology-B

3a. Get the original outcome of normal semantic query/ discovery

4. Return the combined results

3b. Get additional outcome by using ontology mapping result

3. Semantic query/ discovery based on ontology mapping result

Figure 7.12.2.2-1: The semantic query (or semantic resource discovery) procedure with ontology mapping

The detailed message flow is depicted in Figure 7.12.2.2-1 and explained as follows:

1. The hosting CSE (e.g. an oneM2M platform) receives a semantic query (or semantic resource discovery) request
from an Originator (e.g. an oneM2M application). The request shall carry a semanticsFilter request parameter
that contains the original query statement described in the first ontology (e.g. Ontology-A), as well as an
Ontology Mapping Resources request parameter that contains the resource identifiers of one or multiple
<ontologyMapping> resources.
Note that the originator may or may not be the one who created the <ontologyMapping> resources. The use of
the <ontologyMapping> resources is subject to the associated access control policy against the originator.

For example, the original query statement may be:

SELECT ?device
WHERE {
?device rdf:type Ontology-A:LightSensor.
}

2. The hosting CSE shall locate the <ontologyMapping> resources according to the resource identifiers in the
Ontology Mapping Resources request parameter, and retrieves the mapping results between the first ontology
(Ontology-A) and the second ontology (Ontology-B) from the mappingResult attribute of the
<ontologyMapping> resources.

For example, the mappingResult may contain the following triple (mapping relationship):

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 70 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Ontology-A:LightSensor owl:equivalentClass Ontology-B:Light_Sensor

3. The hosting CSE shall perform the semantic query (or semantic resource discovery) upon the semantic description
of the target resources which reference the first ontology (Ontology-A) or the second ontology (Ontology-B),
according to the ontology mapping result and the original query statement. The result shall contain both the
original outcome of a normal semantic query (or semantic resource discovery) operation as well as additional
outcome of the semantic query (or semantic resource discovery) by using the ontology mapping result.

 This step comprises the following sub-steps:

a) The hosting CSE shall perform the semantic query (or semantic resource discovery) procedure upon the
semantic description of the target resources that reference the first ontology (Ontology-A) using the
original query statement, and collect the outcome.

For example, a <container-x> resource may have a <semanticDescriptor> child resource that references
Ontology-A (by the ontologyRef attribute) and contains the following triple that matches the original
query statement:

dev-x rdf:type Ontology-A:LightSensor.

b) The hosting CSE shall perform the semantic query (or semantic resource discovery) procedure upon the
semantic description of the target resources that reference the second ontology (Ontology-B) using the
ontology mapping result (provided in the <ontologyMapping> resources), and get the additional outcome.

This step may be performed in two different approaches that are implementation specific (non-
normative):

 Approach-1: converting the semantic query statement using the ontology mapping result.

The hosting CSE can determine the equivalent query statement described in the second
ontology (Ontology-B) by converting from the original query statement described in the first
ontology (Ontology-A), according to the ontology mapping result between the first ontology
(Ontology-A) and the second ontology (Ontology-B). This can be done by replacing all the
ontology class and properties of the first ontology (Ontology-A) in the query statement with the
corresponding equivalents of the second ontology (Ontology-B).

According to the examples above, the equivalent query statement becomes:

SELECT ?device
WHERE {
?device rdf:type Ontology-B:Light_Sensor.
}

The hosting CSE then performs the semantic query (or semantic resource discovery) procedure
upon the semantic description of the target resources that reference the second ontology
(Ontology-B) using the equivalent query statement, and collect the second query (or semantic
resource discovery) result.

For example, a <container-y> resource may have a <semanticDescriptor> child resource that
references Ontology-B (by the ontologyRef attribute) and contains the following triple that
matches the converted equivalent query statement:

 dev-y rdf:type Ontology-B:Light_Sensor.

 Approach-2: converting the semantic description of the target resources according to the
<ontologyMapping> resources.

 The hosting CSE can determine the equivalent semantic description in the first ontology
(Ontology-A) for the target resources which reference the second ontology (Ontology-B), by
converting from the original semantic description in the second ontology (Ontology-B)
according to the ontology mapping result. This can be done by replacing all the ontology class
and properties of the second ontology (Ontology-B) in the related <semanticDescriptor>
resources of the target resources into the equivalents of the first ontology (Ontology-A).

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 71 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

For example, a <container-y> resource may have a <semanticDescriptor> child resource that
references Ontology-B (by the ontologyRef attribute) and contains the following triple:

 dev-y rdf:type Ontology-B:Light_Sensor.

This triple is then converted into the equivalent triple in Ontology-A that matches the original
query statement:

 dev-y rdf:type Ontology-A:LightSensor.

The hosting CSE then performs the semantic query (or semantic resource discovery) procedure
upon the converted equivalent semantic description using the original query statement, and
collect the second query (or semantic resource discovery) result.

4. The hosting CSE shall combine the query (or semantic resource discovery) results from both step 3a and step 3b,
and return the combined results to the originator.

For example, in the case of semantic query, the results are the IRIs of dev-x and dev-y. In the case of semantic
resource discovery, the results are the resource identifiers of <container-x> and <container-y>.

-

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 72 of 72
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

History
This clause shall be the last one in the document and list the main phases (all additional information will be removed at
the publication stage).

Publication history
V4.0.0 June 2019 Release-4 Development

Full copied from and with the same content as TS-0034 V3.0.2

V4.1.0 October 2019 Incorporated the following two contributions towards TS-0034 as agreed in
oneM2M TP42:

• SDS-2019-0461R02

• SDS-2019-0484R02

V4.1.1 Jan. 2020 Incorporated the following one contribution towards TS-0034 as agreed in
oneM2M TP43:

• SDS-2019-0673

	TS-0034.pdf
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Abbreviations
	4 Conventions
	5 Architectural Model and Concepts
	6 Basic Resource Procedures
	6.1 <semanticDescriptor> Operations
	6.1.1 Introduction
	6.1.2 Create <semanticDescriptor>
	6.1.3 Retrieve <semanticDescriptor>
	6.1.4 Update <semanticDescriptor>
	6.1.5 Delete <semanticDescriptor>

	6.2 <semanticFanOutPoint> Operations
	6.2.1 Introduction
	6.2.2 Retrieve <semanticFanOutPoint>

	6.3 <semanticMashupJobProfile> Operations
	6.3.1 Introduction
	6.3.2 Create <semanticMashupJobProfile>
	6.3.3 Retrieve <semanticMashupJobProfile>
	6.3.4 Update <semanticMashupJobProfile>
	6.3.5 Delete <semanticMashupJobProfile>

	6.4 <semanticMashupInstance> Operations
	6.4.1 Introduction
	6.4.2 Create <semanticMashupInstance>
	6.4.3 Retrieve <semanticMashupInstance>
	6.4.4 Update <semanticMashupInstance>
	6.4.5 Delete <semanticMashupInstance>

	6.5 <mashup> Operations
	6.5.1 Introduction
	6.5.2 Retrieve <mashup>

	6.6 <semanticMashupResult> Operations
	6.6.1 Introduction
	6.6.2 Retrieve <semanticMashupResult>
	6.6.3 Delete <semanticMashupResult>

	6.7 <ontologyRepository> Operations
	6.7.1 Introduction
	6.7.2 Create <ontologyRepository>
	6.7.3 Retrieve <ontologyRepository>
	6.7.4 Update <ontologyRepository>
	6.7.5 Delete <ontologyRepository>

	6.8 <ontology> Operations
	6.8.1 Introduction
	6.8.2 Create <ontology>
	6.8.3 Retrieve <ontology>
	6.8.4 Update <ontology>
	6.8.5 Delete <ontology>
	6.8.6 Semantic query on <ontology> resource via Retrieve

	6.9 <semanticValidation> Operations
	6.9.1 Introduction
	6.9.2 Create <semanticValidation>
	6.9.3 Retrieve <semanticValidation>
	6.9.4 Update <semanticValidation>
	6.9.5 Delete <semanticValidation>

	6.10 <ontologyMapping> Operations
	6.10.1 Introduction
	6.10.2 Create <ontologyMapping> (Ontology Mapping)
	6.10.3 Retrieve <ontologyMapping> (Get the ontology mapping result)
	6.10.4 Update <ontologyMapping> (Ontology Mapping)
	6.10.5 Delete <ontologyMapping>

	6.11 <ontologyMappingAlgorithm> Procedure
	6.12 <ontologyMappingAlgorithmRepository> Procedure
	6.13 <semanticRuleRepository> Operations
	6.13.1 Introduction
	6.13.2 Create <semanticRuleRepository>
	6.13.3 Retrieve <semanticRuleRepository>
	6.13.4 Update <semanticRuleRepository>
	6.13.5 Delete <semanticRuleRepository>

	6.14 <reasoningRules> Operations
	6.14.1 Introduction
	6.14.2 Create <reasoningRules>
	6.14.3 Retrieve <reasoningRules>
	6.14.4 Update <reasoningRules>
	6.14.5 Delete <reasoningRules>

	6.15 <reasoningJobInstance> Operations
	6.15.1 Introduction
	6.15.2 Create <reasoningJobInstance>
	6.15.3 Retrieve <reasoningJobInstance>
	6.15.4 Update <reasoningJobInstance>
	6.15.5 Delete <reasoningJobInstance>

	7 Functional Descriptions
	7.1 Overview
	7.2 Access Control
	7.2.1 Direct ACP control via semantic graph store
	7.2.1.1 Introduction
	7.2.1.2 Create SD relationship triples
	7.2.1.3 Create ACP triples and ACP binding triples
	7.2.1.3.1 Access Control Ontology
	7.2.1.3.2 Example of Using Access Control Ontology

	7.2.1.4 Conduct semantic operations with direct ACP control
	7.2.1.5 Synchronization ACP triples and SD-related triples in the SGS with the resource tree
	7.2.1.5.1 Introduction
	7.2.1.5.2 Procedure for creating ACP triples when a new <accessControlPolicy> resource is created
	7.2.1.5.3 Procedure for updating ACP triples when an existing <accessControlPolicy> resource is updated
	7.2.1.5.4 Procedure for deleting ACP triples when an existing <accessControlPolicy> resource is deleted
	7.2.1.5.5 Procedure for creating ACP-SD binding triples and SD relationship triples in SGS
	7.2.1.5.6 Procedure for updating ACP-SD binding triples in SGS
	7.2.1.5.7 Procedure for updating SD relationship triples in SGS
	7.2.1.5.8 Procedure for deleting SD relationship triples and ACP-SD binding triples in SGS

	7.3 Semantics Annotation
	7.4 Semantic Filtering and Discovery
	7.4.1 Introduction
	7.4.2 Annotation-based semantic discovery method
	7.4.3 Resource link-based method

	7.5 Semantic Queries and Query Scope
	7.6 Content-related Semantic Resource Discovery and Semantic Query
	7.7 Semantics Mashup
	7.7.1 Introduction
	7.7.2 Semantic Mashup Function (SMF) Description
	7.7.2.1 Introduction
	7.7.2.2 High-level architecture
	7.7.2.3 High-level operations

	7.8 Semantics-based Data Analytics
	7.9 Ontology Management
	7.10 Semantic Validation
	7.10.1 Introduction
	7.10.2 Semantic validation independent of <semanticDescriptor> resource operation
	7.10.3 Semantic validation triggered when Create or Update a <semanticDescriptor> resource
	7.10.4 Aspects to be checked in semantic validation

	7.11 Semantics Reasoning
	7.12 Ontology Mapping
	7.12.1 Introduction
	7.12.2 Semantic query and semantic resource discovery based on the ontology mapping result
	7.12.2.1 Introduction
	7.12.2.2 Procedures

	History

