

TS-M2M-0010v2.7.1

oneM2M 技術仕様書
サービス層 API 仕様（MQTT 用）

oneM2M Technical Specification
MQTT Protocol Binding

2018 年 5 月 11 日制定

一般社団法人

情報通信技術委員会

THE TELECOMMUNICATION TECHNOLOGY COMMITTEE

本書は、一般社団法人情報通信技術委員会が著作権を保有しています。
内容の一部又は全部を一般社団法人情報通信技術委員会の許諾を得ることなく複製、

転載、改変、転用及びネットワーク上での送信、配布を行うことを禁止します。

 i

TS-M2M-0010v2.7.1

oneM2M 技術仕様書－サービス層 API 仕様（MQTT 用） [oneM2M Technical Specification - MQTT Protocol
Binding]

＜参考＞ [Remarks]

１．英文記述の適用レベル [Application level of English description]

 適用レベル [Application level]：E2

 本標準の本文、付属資料および付録の文章および図に英文記述を含んでいる。

[English description is included in the text and figures of main body, annexes and appendices.]

２．国際勧告等の関連 [Relationship with international recommendations and standards]

 本標準は、oneM2M で承認された Technical Specification 0010V2.7.1 に準拠している。

[This standard is standardized based on the Technical Specification 0010 (V2.7.1) approved by oneM2M.]

３．上記国際勧告等に対する追加項目等 [Departures from international recommendations]

 原標準に対する変更項目 [Changes to original standard]

 原標準が参照する標準のうち、TTC 標準に置き換える項目。

[Standards referred to in the original standard, which are replaced by TTC standards.]

 原標準が参照する標準のうち、それらに準拠した TTC 標準等が制定されている場合は自動的に

最新版 TTC 標準等に置き換え参照するものとする。

 [Standards referred to in the original standard should be replaced by derived TTC standards.]

４．工業所有権 [IPR]

 本標準に関わる「工業所有権等の実施の権利に係る確認書」の提出状況は、ＴＴＣホームページによる。

[Status of “Confirmation of IPR Licensing Condition” submitted is provided in the TTC web site.]

５．作成専門委員会 [Working Group]

 oneM2M 専門委員会 [oneM2M Working Group]

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 1 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

O NEM2M

TECHNICAL SPECIFICATIO N

Document Number TS-0010-V2.7.1

Document Name: MQTT Protocol Binding

Date: 2018-03-12

Abstract: This document defines the binding of the oneM2M protocols to an MQTT
transport layer.

This Specification is provided for future development work within oneM2M only. The Partners accept no

liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type

1.Published oneM2M specifications and reports for implementation should be obtained via the oneM2M

Partners' Publications Offices.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 2 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the

need for a common M2M Service Layer that can be readily embedded within various

hardware and software, and relied upon to connect the myriad of devices in the field with

M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2018, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the

appropriate degree of experience to understand and interpret its contents in accordance with

generally accepted engineering or other professional standards and applicable regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS

TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO

REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF

INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE

LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY

THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN

NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER

INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 3 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents
1 Scope .. 5

2 References .. 5
2.1 Normative references ... 5
2.2 Informative references ... 6

3 Definitions and abbreviations ... 6
3.1 Definitions ... 6
3.2 Abbreviations ... 6

4 Conventions .. 6

5 Introduction .. 7
5.1 Use of MQTT .. 7
5.2 Binding overview ... 7
5.2.1 Introduction .. 7
5.2.2 Scenarios .. 8
5.2.2.1 MQTT server co-located scenario .. 8
5.2.2.2 MQTT server independently-located scenario ... 9
5.2.3 Configurations .. 10
5.2.3.1 AE to IN ... 10
5.2.3.2 AE to MN ... 10
5.2.3.3 MN to IN .. 11
5.2.3.4 AE to MN to IN .. 11
5.2.3.5 AE to IN (Independent scenario) .. 12
5.2.3.6 AE to MN (Independent scenario) .. 12
5.2.3.7 MN to IN (Independent scenario) ... 12
5.2.3.8 AE to MN to IN (Independent scenario) .. 13

6 Protocol Binding .. 14
6.1 Introduction.. 14
6.2 Use of MQTT .. 14
6.3 Connecting to MQTT ... 14
6.3.0 Introduction .. 14
6.3.1 Variable header of MQTT CONNECT Packet .. 14
6.3.2 Payload of MQTT CONNECT Packet ... 15
6.3.3 Application of MQTT CONNECT Packet ... 16
6.4 Sending and Receiving Messages .. 16
6.4.1 Request and Response Messages ... 16
6.4.1.0 ... Introduction

 .. 16
6.4.1.1 Fixed header of MQTT PUBLISH Packet .. 17
6.4.1.2 Variable header of MQTT PUBLISH Packet ... 17
6.4.1.3 Payload of MQTT Control PUBLISH Packet .. 18
6.4.2 Topic Name for Requests ... 18
6.4.3 Listening for and responding to a Request ... 18
6.4.4 Initial Registration .. 19
6.4.5 Request/Response Message Flow .. 19
6.5 Primitive Mapping ... 20
6.5.1 Request primitives .. 20
6.5.2 Response primitives ... 21
6.5.3 Serialization Format Negotiation ... 22
6.5.4 Content-type ... 22
6.6 URI format ... 22

7 Security .. 23
7.1 Introduction.. 23
7.2 Authorization ... 23
7.3 Authentication .. 24
7.4 Authorization by the MQTT Server ... 24

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 4 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.5 General Considerations .. 26

Annex A (informative): Overview of MQTT ... 27

A.0 Introduction .. 27

A.1 MQTT features ... 27

A.2 MQTT implementations ... 28

A.3 MQTT Details .. 28
A.3.1 Addressing a message - Topics and Subscriptions .. 28
A.3.2 Reliability .. 29
A.3.3 Retained Messages ... 30

History .. 31

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 5 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope
The present document specifies the binding of Mca and Mcc primitives (message flows) onto the MQTT protocol. It

specifies:

1) How a CSE or AE connects to MQTT.

2) How an Originator (CSE or AE) formulates a Request as an MQTT message, and transmits it to its intended

Receiver.

3) How a Receiver listens for incoming Requests.

4) How that Receiver can formulate and transmit a Response.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

The following referenced documents are necessary for the application of the present document.

[1] OASIS MQTT Version 3.1.1 (29 October 2014). OASIS Standard. Edited by Andrew Banks and

Rahul Gupta.

NOTE: Available at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[2] oneM2M TS-0001: "Functional Architecture".

[3] oneM2M TS-0004: "Service Layer Core Protocol Specification".

[4] IETF RFC 793 (September 1981): "Transmission Control Protocol - DARPA Internet Program -

Protocol Specification", J. Postel.

NOTE: Available at http://www.ietf.org/rfc/rfc793.txt.

[5] IETF RFC 5246 (August 2008): "The Transport Layer Security (TLS) Protocol Version 1.2", T.

Dierks.

NOTE: Available at http://tools.ietf.org/html/rfc5246.

[6] IETF RFC 6455 (December 2011): "The WebSocket Protocol", I. Fette.

NOTE: Available at http://tools.ietf.org/html/rfc6455.

[7] oneM2M TS-0003: "Security Solutions".

[8] IETF RFC 3986 (January 2005): "Uniform Resource Identifier (URI): Generic Syntax", T.

Berners-Lee.

NOTE: Available at https://tools.ietf.org/html/rfc3986.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc3986

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 6 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the

user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

originator [2]: actor that initiates a Request

NOTE: An Originator can either be an Application or a CSE.

receiver [2]: actor that receives the Request

NOTE: A Receiver can be a CSE or an Application.

resource [2]: uniquely addressable entity in oneM2M System such as by the use of a Uniform Resource Identifier

(URI)

NOTE: A resource can be accessed and manipulated by using the specified procedures.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in oneM2M TS-0001 [2] and the following apply:

ADN Application Dedicated Node

ADN-AE AE which resides in the Application Dedicated Node

AE Application Entity

ASN Application Service Node

CSE Common Service Entity

IN Infrastructure Node

IN-AE Application Entity that is registered with the CSE in the Infrastructure Node

IN-CSE CSE which resides in the Infrastructure Node

MN Middle Node

MN-CSE CSE which resides in the Middle Node

TLS Transport Level Security

4 Conventions
The keywords "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be

interpreted as described in the oneM2M Drafting Rules [i.1].

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 7 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5 Introduction

5.1 Use of MQTT
This binding makes use of MQTT to provide reliable two-way communications between two parties (AEs and CSEs). It

uses the following features of MQTT:

• Durable Sessions, providing Store and Forward in cases where network connectivity is not available.

• MQTT's "QoS 1" message reliability level. This provides reliability without incurring the overhead implied by

QoS 2.

• NAT traversal (neither of the two parties is required to have prior knowledge of the other party's IP address).

• Dynamic topic creation and wild-carded subscription filters.

It does not use the following features:

• One-to-many publish/subscribe.

• Retained Messages.

• Will Messages.

• QoS 0 or QoS 2 message reliability levels.

5.2 Binding overview

5.2.1 Introduction
The MQTT protocol binding specifies how the Mca or Mcc request and response messages are transported across the

MQTT protocol. Both communicating parties (AEs and CSEs) typically make use of an MQTT client library, and the

communications are mediated via the MQTT server. There is no need for the client libraries or the server to be provided

by the same supplier, since the protocol they use to talk to each other is defined by the MQTT specification [1].

Furthermore, the binding does not assume that the MQTT client libraries or server implementations are necessarily

aware that they are being used to carry Mca, Mcc or any other oneM2M-defined primitives.

The binding is defined in terms of the MQTT protocol flows that take place between the client libraries and the MQTT

server in order to effect the transport of an Mca or Mcc message.

There are two scenarios depending on the location of MQTT server: MQTT server co-located within a node, and MQTT

server located independently from nodes.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 8 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.2.2 Scenarios

5.2.2.1 MQTT server co-located scenario

Mca

ADN

AE

ADN

AE

ASN

AE

CSE

AE

CSE

MN

AE

CSE

MN

AE

CSE

IN

AE

CSE

M
Q

T
T

 C
lie

n
t

PS1

Mca

PS2

Mcc

PS3

PS4

Mcc

PS5

Mcc
PS6
Mcc

PS7

Mca

M
Q

T
T

 C
lie

n
t

M
Q

T
T

 C
lie

n
t

Mcc

Mcc

M
Q

T
T

 S
e

rv
e

r

M
Q

T
T

 C
lie

n
t

M
Q

T
T

 C
lie

n
t

M
Q

T
T

 S
e

rv
e

r

M
Q

T
T

 C
lie

n
t

M
Q

T
T

 C
lie

n
t

M
Q

T
T

 C
lie

n
t

M
Q

T
T

 S
e

rv
e

r

M
Q

T
T

 C
lie

n
t

ASN

Figure 5.2.2.1-1: MQTT server co-located scenario

Figure 5.2.2.1-1 shows a protocol segment view of the MQTT server co-located scenario. In this scenario, all oneM2M

nodes (ADN, ASN, MN, IN) include one or more MQTT clients. MQTT servers are provided within MN and IN.

In this scenario, the protocol segments are illustrated as follows.

Table 5.2.2.1-1: Protocol segment for MQTT server co-located scenario

Protocol Segment oneM2M Message Transported MQTT Interaction

PS1 Mca (AE of ADN to CSE of IN) Client in ADN to Server in IN
PS2 Mca (AE of ADN to CSE of MN) Client in ADN to Server in MN
PS3 Mcc (CSE of ASN to CSE of MN) Client in ASN to Server in MN
PS4 Mcc (CSE of ASN to CSE of IN) Client in ASN to Server in IN
PS5 Mcc (CSE of MN to CSE of MN) Client in MN to Server in MN
PS6 Mcc (CSE of MN to CSE of IN) Client in MN to Server in IN
PS7 Mcc' (CSE of IN to CSE of IN) Client in IN to Server in IN

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 9 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.2.2.2 MQTT server independently-located scenario

Mca

ADN

AE

ADN

AE

ASN

AE

CSE

AE

CSE

MN

AE

CSE

MN

AE

CSE

IN

AE

CSE

M
Q

TT C
lien

t

PS1

Mca

PS2

Mcc

PS3

PS4

Mcc

PS5
Mcc

PS6
Mcc

PS7

Mca

M
Q

TT C
lien

t
M

Q
TT C

lien
t

Mcc

Mcc'

M
Q

T
T

 S
e

rv
e

r

M
Q

TT C
lien

t

M
Q

TT C
lient

MQTT Server

M
Q

TT C
lien

t

M
Q

TT C
lient

M
Q

TT C
lien

t

M
Q

TT C
lient

ASN

Mcc'

Figure 5.2.2.2-1: MQTT server independently-located scenario

Figure 5.2.2.2-1 shows a protocol segment view in which the MQTT server is located independently from the oneM2M

nodes. In this scenario, all oneM2M nodes (ADN, ASN, MN, IN) include one or more MQTT clients. MQTT servers

exist independently, which means the servers are located outside of the nodes.

In this scenario, the protocol segments are illustrated as follows.

Table 5.2.2.2-1: Protocol segment for MQTT server independently located scenario

Protocol Segment oneM2M Message Transported MQTT Interaction

PS1 Mca (AE of ADN to CSE of IN) Client in ADN to Server
PS2 Mca (AE of ADN to CSE of MN) Client in ADN to Server
PS3 Mcc (CSE of ASN to CSE of MN) Client in ASN to Server
PS4 Mcc (CSE of ASN to CSE of IN) Client in ASN to Server
PS5 Mcc (CSE of MN to CSE of MN)

Mcc (CSE of MN to CSE of ASN)
Mca (CSE of MN to AE of ADN)

Client in MN to Server

PS6 Mcc (CSE of MN to CSE of MN)
Mcc (CSE of MN to CSE of IN)

Client in MN to Server

PS7 Mcc (CSE of IN to CSE of MN)
Mcc (CSE of IN to CSE of ASN)
Mca (CSE of IN to AE of ADN)

Client in IN to Server

The next four clauses show the four configurations in which the MQTT binding can be used in the co-located scenario,

followed by similar configurations in the independently-located scenario.

NOTE: Other configurations are possible, but they are currently out of scope.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 10 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.2.3 Configurations

5.2.3.1 AE to IN

This configuration, illustrated in figure 5.2.3.1-1, allows an AE to connect to an IN via MQTT.

Figure 5.2.3.1-1: Using MQTT between AE and IN-CSE

The MQTT server is co-located with the IN-CSE and allows connection of the ADN-AEs (typically devices) and/or

IN-AEs. It can store and forward messages if there is a gap in the connectivity with the devices. Note that the AEs each

establish their own separate TCP/IP connection with the MQTT server. Thus the server shall have an accessible IP

address, but AEs need not have.

5.2.3.2 AE to MN

This configuration, illustrated in figure 5.2.3.2-1, allows an ADN-AE to connect to an IN via MQTT.

Figure 5.2.3.2-1: Using MQTT between AE and MN-CSE

This configuration is very similar to the AE-IN configuration shown in clause 5.2.3.1, except that the MQTT server is

hosted on the MN rather than the IN. Onwards connection to the IN-CSE is via a different transport protocol.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 11 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.2.3.3 MN to IN

This configuration, illustrated in figure 5.2.3.3-1, allows an MN to connect to an IN via MQTT.

Figure 5.2.3.3-1: Mcc using MQTT between MN and IN

The MQTT server is co-located with the IN-CSE and allows connection of the MNs (typically in-field gateway boxes).

It can store and forward messages if there is a gap in the connectivity with the gateways. Note that the MNs each

establish their own separate TCP/IP connections with the MQTT server. Thus the server shall have an accessible IP

address, but MNs need not have.

5.2.3.4 AE to MN to IN

This configuration, illustrated in figure 5.2.3.4-1, is a combination of the previous two.

Figure 5.2.3.4-1: Mca and Mcc both using MQTT

In this configuration the two MQTT servers are independent from each other (that is to say they do not have a shared

topic space). Any interactions between the ADN-AE and the IN-CSE are mediated by the MN-CSE.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 12 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.2.3.5 AE to IN (Independent scenario)

This configuration, illustrated in figure 5.2.3.5-1, allows an AE to connect to an IN via MQTT.

Figure 5.2.3.5-1: Using MQTT between AE and IN-CSE

The MQTT server is an independent entity, located outside of the nodes. In order to deliver Mca messages, MQTT

clients within ADN-AE/IN-AE and IN-CSE connect to the MQTT server. After the clients establish TCP/IP connection

with the MQTT server, Mca messages between ADN-AE/IN-AE and IN-CSE can be transported via the MQTT server.

5.2.3.6 AE to MN (Independent scenario)

This configuration, illustrated in figure 5.2.3.6-1, allows an ADN-AE to connect to an IN via MQTT.

Figure 5.2.3.6-1: Using MQTT between AE and MN-CSE

In this configuration, the MQTT server is an independent entity, located outside of the nodes. MQTT clients within

ADN-AE and MN-CSE are connected to the MQTT server, and the MQTT server stores and forwards the Mca

messages between ADN-AE and MN-CSE. In addition, this figure shows that the onwards connection to the IN-CSE is

via a different transport protocol.

5.2.3.7 MN to IN (Independent scenario)

This configuration, illustrated in figure 5.2.3.7-1, allows an MN to connect to an IN via MQTT.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 13 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure 5.2.3.7-1: Mcc using MQTT between MN and IN

In this configuration, the MQTT server is an independent entity, located outside of nodes. Mcc message delivery

between MN-CSE and IN-CSE are performed via the independently located MQTT server. As introduced in the

previous clauses, in order to send messages, each MQTT client within MN-CSE and IN-CSE connects to the MQTT

server and Mcc messages are transported via MQTT server.

5.2.3.8 AE to MN to IN (Independent scenario)

This configuration, illustrated in figure 5.2.3.8-1, is a combination of the previous two.

Figure 5.2.3.8-1: Mca and Mcc both using MQTT

In this configuration, the MQTT clients of ADN-AE and MN-CSE and IN-CSE connect to the independently located

MQTT server. Any interactions such as Mca or Mcc message delivery among the ADN-AE and the MN-CSE and the

IN-CSE are mediated by the MQTT server.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 14 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6 Protocol Binding

6.1 Introduction
In this clause the use of MQTT is profiled and the key elements of the binding are defined:

1) How a CSE or AE connects to MQTT.

2) How an Originator (CSE or AE) formulates a Request as an MQTT message, and transmits it to its intended

Receiver.

3) How a Receiver listens for incoming Requests, and how it formulates and transmits a Response.

4) How the Mca and Mcc CRUD operations map to MQTT messages.

For more information on MQTT itself see Annex A or refer to the MQTT specification [1].

6.2 Use of MQTT
MQTT includes reliability features which allow recovery from loss of network connectivity without requiring explicit

involvement of the applications that are using it, however to do this it requires an underlying network protocol that

provides ordered, lossless, bi-directional connections. The MQTT specification [1] does not mandate a particular

underlying protocol, so this binding specification restricts the choice of underlying protocol: it shall be one of the

following:

• Raw TCP/IP [4].

• TCP/IP with Transport Level Security (TLS) [5].

• WebSocket [6] - either with or without the use of TLS.

6.3 Connecting to MQTT

6.3.0 Introduction
In order to communicate, the two client parties (AE and CSE or CSE and CSE) shall connect to a common MQTT

server. The MQTT server shall be hosted in one of the two nodes or shall exist as an independent external entity,

following one of the two scenarios shown in clause 5.2.

Once each party has located the address of the MQTT server, it then connects to it using the standard MQTT

CONNECT Control Packet.

An MQTT Control Packet consists of up to three parts: a fixed header, a variable header, and a payload as shown in

Figure 6.3.0-1.

Fixed header Variable header Payload

2 bytes variable variable

Figure 6.3.0-1: Format of MQTT Control Packet

6.3.1 Variable header of MQTT CONNECT Packet
A variable header for the MQTT CONNECT Packet consists of four fields in the following order: Protocol Name,

Protocol Level, Connect Flags and Keep Alive as shown in Figure 6.3.1-1.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 15 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

815 07

Protocol Name (MQTT)

Connect Flags Protocl Level

Keep Alive

MSB LSB

Length

Figure 6.3.1-1: Variable header of MQTT CONNECT Packet

The value of Protocol Name field is "MQTT". The value of the Protocol Level field for the MQTT version 3.1.1

of the protocol is 4. The Connect Flags is shown in Figure 6.3.1-2. The Keep Alive is a time interval measured in

seconds.

User Name
Flag

Password
Flag

Will Retain Will QoS Will Flag
Clean

Session
Reserved

bit 7 bit 6 bit 5 bit 3 ~ 4 bit 2 bit 1 bit 0

Figure 6.3.1-2: Connect Flags of variable header for MQTT CONNECT Packet

6.3.2 Payload of MQTT CONNECT Packet
A payload for the MQTT CONNECT Packet is determined by the Connect Flags in the variable header. These fields

may consist of Client Identifier, Will Topic, Will Message, User Name, Password.

Mandatory fields to establish an MQTT session for oneM2M are:

• Client Identifier

Optional fields to establish an MQTT session for oneM2M are:

• User Name

• Password

An example of payload of an MQTT CONNECT Packet is shown in Figure 6.3.2-1.

815 07

Client Identifier

User Name

Password (0 ~ 65535 bytes)

Figure 6.3.2-1: Example of an MQTT CONNECT Packet

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 16 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.3.3 Application of MQTT CONNECT Packet
The following additional considerations apply:

• Client Identifier: The CONNECT Packet contains a Client Identifier as described in clause 6.3.2. The Client

Identifiers have to be unique at least among all clients that connect to a given MQTT server instance (this is a

requirement imposed by the MQTT protocol). This condition will be satisfied if an AE uses its AE-ID and a

CSE uses its CSE-ID. See clause 7 of oneM2M TS-0001 [2] for a discussion of these Identifiers. The prefix

A:: or C:: shall be added to the ID to show whether it is an AE-ID or a CSE-ID as these ID spaces are not

distinct.

The AE-ID or CSE-ID may not be known during the initial registration process, in which case the client shall

use some other appropriate unique ID.

• Connect Flags:

- A client shall set the "Clean Session" flag in the MQTT CONNECT Packet to false. This means that

MQTT Session state related to that client will be retained by the MQTT Server in the event of a

disconnection (deliberate or otherwise) of that client.

- A client shall not set the "Will Flag", "Will QoS", or "Will Retain" so Will Message and Will
Topic shall not be present in the payload.

• Keep Alive: A client may choose to provide a non-zero MQTT Keep Alive value or to provide a Keep Alive of

0 (this disables the MQTT Keep Alive).

• User Name and Password: The MQTT server may require that a client provides a User Name and a password

(or other credential). If the MQTT server authenticates by user name and password, the corresponding

user name flag and password flag in the CONNECT shall be set to 1. For more information see clause 7

 Security.

A client might choose to keep the MQTT connection open permanently (restarting it as soon as possible after any

unforeseen connection loss), it might choose to connect only when it wants to act as an Originator, or it might choose to

connect based on the <schedule> associated with a relevant oneM2M resource.

Once a client has connected to the MQTT server it can then communicate (subject to authorization policies) with any

other client connected to its server. There is no need for it to create another connection if it wants to communicate with

a different counter-party.

When a client determines that it no longer wishes to participate in an MQTT Session with its MQTT Server it shall

perform the following steps:

• Disconnect from that server, if it is currently connected.

• Reconnect with the cleanSession flag set to true.

• Disconnect again.

These steps delete any state that the MQTT server might be holding on behalf of the client.

6.4 Sending and Receiving Messages

6.4.1 Request and Response Messages

6.4.1.0 Introduction

MQTT does not have a data model to describe or constrain the content of its Application Message payloads (to that

extent it is similar to a TCP socket). Mca and Mcc request messages shall be serialized into XML or JSON or CBOR

following the serialization process defined in clause 6.5.

The packet type field in Figure 6.4.1.1-1 is used to define the MQTT Control Packet type. It is a 4-bit field which

possible values are listed in Table 6.4.1.0-1. When a oneM2M Request/Response message is bound to MQTT, its

packet type shall have value 3, i.e. the Request/Response message is delivered in an MQTT PUBLISH Packet.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 17 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.4.1.0-1: MQTT Control Packet Types

Reserved 0 Reserved for future use
CONNECT 1 Client request to connect to server
CONNACK 2 Connect acknowledgement
PUBLISH 3 Publish message
PUBACK 4 Publish message acknowledgement
PUBREC 5 Publish received (QoS=2)
PUBREL 6 Publish release (QoS=2)
PUBCOMP 7 Publish complete (QoS=2)
SUBSCRIBE 8 Client subscribe request
SUBACK 9 Subscribe acknowledgement
UNSUBSCRIBE 10 Client unsubscribe request
UNSUBACK 11 Unsubscribe acknowledgement
PINGREQ 12 Ping request
PINGRESP 13 Ping response
DISCONNECT 14 Client disconnection request
Reserved 15 Reserved for future use

6.4.1.1 Fixed header of MQTT PUBLISH Packet

The fixed header of the MQTT PUBLISH Packet consists of RETAIN, QoS Level, DUP flag, Packet Type,

Remaining Length fields as shown in Figure 6.4.1.1-1. The QoS Level represents the QoS level of the MQTT

PUBLISH Packet with possible values of 0, 1 or 2. However, since oneM2M messages are idempotent, the QoS Level

should not be set to QoS 2.

RETAINQoS LevelDUP flagPacket Type

bit 7 bit 6 bit 5 bit 4 bit 2 bit 1 bit 0bit 3

Remaining Length

MSB LSB

Figure 6.4.1.1-1: Fixed header of MQTT PUBLISH Packet

NOTE: MQTT packets are subjected to a theoretical maximum message size of 256 MB, but it is good practice

not to send packets that are bigger than a 100 kB. If a larger amount of data needs to be sent, it should be

segmented into multiple PUBLISH packets.

6.4.1.2 Variable header of MQTT PUBLISH Packet

The variable header for the MQTT PUBLISH Packet consists of two fields in the following order: Topic Name,

Packet Identifier.

(MQTT) Packet Identifier

815 07

Topic Name
(/oneM2M/req/Originator-ID/Receiver-ID) or
(/oneM2M/resp/Originator-ID/Receiver-ID)

Figure 6.4.1.2-1: Variable header for PUBLISH Packet

The Topic Name identifies the information channel to which payload data is published. The Topic Name for a

oneM2M Request Message is specified at clause 6.4.2. The Topic Filter used to listen for and respond to a Request

is specified at clause 6.4.3.

The Packet Identifier field is only present in PUBLISH Packets where the QoS level is 1 or 2.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 18 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.4.1.3 Payload of MQTT Control PUBLISH Packet

The payload for the MQTT PUBLISH Packet is a oneM2M Request Message or Response Message as specified in

clause 6.5.

6.4.2 Topic Name for Requests
A request is transmitted by sending it as an MQTT PUBLISH Packet to the MQTT Server. The MQTT Publish Packet

uses a Topic Name that identifies both the Originator and the Receiver of the request as follows:

• /oneM2M/req/<originator>/<receiver>/<type>

- "oneM2M" is a literal string identifying the topic as being used by oneM2M.

- <originator> is the SP-relative-AE-ID or SP-relative-CSE-ID of the entity that sends the request on this

hop, omitting any leading "/"s and replacing any other "/" characters with ":" characters.

- <receiver> is the SP-relative-AE-ID or SP-relative-CSE-ID of the Receiver (AE, Transit CSE or Hosting

CSE) on this hop, omitting any leading "/"s and replacing any other "/" characters with ":" characters.

- "req" is a literal string identifying this as a request.

- <type> is "xml", "json" or "cbor" indicating the MQTT payload data type as described in clause 6.5.4.

6.4.3 Listening for and responding to a Request
A Receiver listens for requests arriving via MQTT by subscribing using a wildcarded Topic Filter of the following

form:

• /oneM2M/req/+/<receiver>

- "oneM2M" is a literal string identifying the topic as being used by oneM2M.

- + is a wildcard which matches any entity.

- <receiver> is the SP-relative-AE-ID or SP-relative-CSE-ID of the Receiver (AE, Transit CSE or Hosting

CSE), omitting any leading "/"s and replacing any other "/" characters with ":" characters.

- "req" is a literal string identifying this as a request.

When it receives a request, the Receiver shall perform the Core Transport operations associated with the request,

including any access control policy checks. In particular it shall check the request expiration timestamp (if any)

contained in the request, since it is possible that that time might have passed while the message was being stored by

MQTT.

It transmits a response by sending an MQTT PUBLISH Packet to a response topic. This takes the form:

• /oneM2M/resp/<originator>/<receiver>

- "oneM2M" is a literal string identifying the topic as being used by oneM2M.

- <receiver> is the SP-relative-AE-ID or SP-relative-CSE-ID of the Receiver (AE, Transit CSE or Hosting

CSE), omitting any leading "/"s and replacing any other "/" characters with ":" characters.

- <originator> is the SP-relative-AE-ID or SP-relative-CSE-ID of the entity that sent the corresponding

request, omitting any leading "/"s and replacing any other "/" characters with ":" characters.

- "resp" is a literal string identifying this as a response.

The Originator shall subscribe to this Topic (either explicitly or using a wildcarded filter) in order to see the response.

The payload of the MQTT PUBLISH packet is used to carry the response primitive, as described in clause 6.5.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 19 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.4.4 Initial Registration
In some security scenarios, an Originator might not initially know its AE-ID or CSE-ID. Initial registration exchanges

can use the communication pattern described in clauses 6.4.1 and 6.4.2 except that they use Topics containing a

credential ID rather than an AE-ID or CSE-ID, as follows:

• /oneM2M/reg_req/<originator>/<receiver>

- "oneM2M" is a literal string identifying the topic as being used by oneM2M.

- <originator> is the Credential-ID. Any "/" characters embedded in the ID shall be replaced with ":"

characters.

- <receiver> is the SP-relative-CSE-ID of the Receiver (Transit or Hosting CSE) specified in the

corresponding request, omitting any leading "/".

- "reg_req" is a literal string identifying it as a registration request.

and

• /oneM2M/reg_resp/<originator>/<receiver>

- "oneM2M" is a literal string identifying the topic as being used by oneM2M.

- <originator> is the Credential-ID of the Originator in the corresponding request. Any "/" characters

embedded in the ID shall be replaced with ":" characters.

- <receiver> is the SP-relative-CSE-ID of the Receiver (Transit or Hosting CSE) in the corresponding

request, omitting any leading "/".

- "reg_resp" is a literal string identifying it as a registration response.

6.4.5 Request/Response Message Flow

MQTT Domain

Non-MQTT Domain

AE MQTT Client MQTT Server MQTT Client CSE

Initiate
Initiate

Non-MQTT Domain

SUBACK

SUBSCRIBE

SUBSCRIBE

SUBACK

CONNACK

CONNECT

CONNECT
CONNACK

(/oneM2M/req/+/SP-relative-AE-ID,
/oneM2M/resp/SP-relative-AE-ID/+)

(/oneM2M/req/+/SP-relative-CSE-ID,
/oneM2M/resp/SP-relative-CSE-ID/+)

Figure 6.4.5-1: Initiating Process in MQTT binding

In the MQTT protocol, each client shall subscribe to the MQTT server to receive messages. As shown in figure 6.4.5-1,

the AE or CSE initiates the MQTT binding process by trying to connect to the MQTT server, as described in clause 6.3.

After each MQTT client successfully connects to the server, it shall subscribe to the MQTT server. The Topic
Filters with which each MQTT client subscribes are "/oneM2M/req/+/<receiver>" (to receive requests) and

"/oneM2M/resp/<originator>/+" (to receive replies) where <receiver> and <originator> are both set equal to the ID

(SP-relative-AE-ID or SP-relative-CSE-ID as appropriate).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 20 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Accordingly the plus sign ('+' U+002B) wildcard and the SP-relative-AE-ID or SP-relative-CSE-ID are used in the

Topic Filter within the MQTT SUBSCRIBE Packet. This enables the MQTT client to receive the PUBLISH

Packets whose target it is. Therefore, through this process, the AE or CSE receives messages if the request/response

messages are published to "/oneM2M/req/<originator>/<receiver>" or "/oneM2M/resp/<originator>/<receiver>".

MQTT Domain

Non-MQTT Domain

Originator MQTT Client MQTT Server MQTT Client Receiver

Request

Non-MQTT DomainPUBLISH

PUBLISH

PUBACK

PUBACK

PUBLISH

PUBACK

PUBLISH

Request

Response

Response
PUBACK

(/oneM2M/req/Originator-ID/Receiver-ID)

(/oneM2M/req/Originator-ID/Receiver-ID)

(/oneM2M/resp/Originator-ID/Receiver-ID)

(/oneM2M/resp/Originator-ID/Receiver-ID)

Figure 6.4.5-2: Request/Response message delivery over MQTT

As an example, Figure 6.4.5-2 illustrates the Request/Response message delivery over MQTT protocol between

Originator and Receiver via the Mca/MCC reference point in oneM2M. The message flow is as follows.

In this flow, the Originator wants to send a Request message to the Receiver. The Originator's MQTT client library

sends an MQTT PUBLISH Packet to the MQTT server with "/oneM2M/req/ SP-relative-AE-ID/SP-relative-CSE-ID" as

the Topic Name.

The MQTT PUBLISH packet shall include {"op", "fr", "to", "rqi"} and any optional parameters in accordance with the

operation (CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY) as specified in clause 7.2.1.1 of oneM2M

TS-0004 [3] in its payload.

When the MQTT server receives the MQTT PUBLISH Packet from the MQTT client, the server refers to the Topic
Name and delivers the message to the intended MQTT client. Finally, the MQTT client library delivers the message to

the Receiver.

After that, the Receiver builds a Topic Name for the Response message of the form "/oneM2M/resp/Originator-

ID/Receiver-ID". The payload of the MQTT PUBLISH Packet shall include {"rsc", "rqi"} and any optional message

parameters in accordance with operation (CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY) as specified in

clause 7.2.1.2 of oneM2M TS-0004 [3] in its payload.

6.5 Primitive Mapping

6.5.1 Request primitives
A oneM2M request primitive is made up of a number of control parameters and (optionally) a content part. All the

parameters in these parts are serialized into the payload of an MQTT Publish Packet, using the rules given in clause 8 of

oneM2M TS-0004 [3] applied to m2m:requestPrimitive defined in clause 6.4.1 of oneM2M TS-0004 [3].

All the parameters that are present in the primitive shall be serialized, in particular the request shall contain the

mandatory parameters such as Operation, To, From, Request Identifier as specified in clause 8.1.2 of oneM2M

TS-0001 [2] and 7.1.1.1 of oneM2M TS-0004 [3].

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 21 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Fixed Variable

Request
Identifier

FromToOperation
Resource

Type

Payload

mandatory parameters
operation

dependent
parameters

Content

optional
parameters

...
Originating
Timestamp

Figure 6.5.1-1: MQTT Request example

An example of an MQTT Request message serialized using JSON is:

{"op": 1, "to": "//xxxxx/2345", "fr": "//xxxxx/99", "rqi": "A1234", "ty": 18, "pc":

{"m2m:sch":{"rn":"schedule1", "se":{"sce":["* 0-5 2,6,10 * * * *"]}}}, "ot": 20150910T062032}

• op: short name of Operation parameter specified as m2m:operation in oneM2M TS-0004 [3].

• to: short name of To parameter specified either xs:anyURI [3] or m2m:nhURI [3]. It is an URI of the target

resource.

• fr: short name of From parameter which is an ID of the Originator e.g. either the AE or CSE.

• rqi: short name of Request Identifier specified as m2m:requestID [3].

• ty: short name of Resource Type parameter specified as m2m:resourceType [3].

• pc: short name of Content parameter specified in oneM2M TS-0004 [3].

• ot: short name of Originating Timestamp parameter specified as m2m:timestamp [3].

6.5.2 Response primitives
A oneM2M response primitive is serialized using the rules given in clause 8 of oneM2M TS-0004 [3] applied to

m2m:responsePrimitive defined in clause 6.4.2 of oneM2M TS-0004 [3].

In particular, each response primitive shall include the Response Status Code parameter to indicate success or failure of

the operation and the Request Identifier parameter.

Fixed Variable

Content
Request
Identifier

Response
Status Code

To From

Payload

mandatory
parameters

operation
dependent
parameters

optional
parameters

...

Figure 6.5.2-1: MQTT Response example

An example of an MQTT Response message serialized using JSON is:

{"rsc": 2000, "rqi": "A1234", "pc": {"m2m:sch":{"se":{"sce":["* 0-5 2,6,10 * * * *"]}}}, "to":

"//xxxxx/2345", "fr": "//xxxxx/99"}

• rsc: short name of Response Status Code parameter specified as m2m:responseStatusCode in oneM2M

TS-0004 [3].

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 22 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• rqi: short name of Request Identifier specified as m2m:requestID in oneM2M TS-0004 [3].

• pc: short name of Content parameter specified in oneM2M TS-0004 [3].

• to: short name of To parameter specified either xs:anyURI [3] or m2m:nhURI [3]. It is an URI of the target

resource.

• fr: short name of From parameter which is an ID of the Originator e.g. either the AE or CSE.

6.5.3 Serialization Format Negotiation
When sending a response primitive over MQTT, the Receiver should use the same serialization that was used in the

corresponding request primitive.

6.5.4 Content-type
An MQTT message payload contains a oneM2M request or response primitive which is serialized using the XML, the

JSON or the CBOR encoding given in clause 8 of oneM2M TS-0004 [3].

When an MQTT client publishes a message, it shall use a Topic name to indicate the format of the payload included in a

PUBLISH message. As defined in clause 8 of oneM2M TS-0004 [3], the payload of request or response message shall

include oneM2M primitives serialized using XML, JSON or CBOR.

The Topic name takes this form:

• /oneM2M/req/<originator>/<receiver>/xml or /oneM2M/req/<originator>/<receiver>/json or

/oneM2M/req/<originator>/<receiver>/cbor

• /oneM2M/resp/<originator>/<receiver>/xml or /oneM2M/resp/<originator>/<receiver>/json or

/oneM2M/resp/<originator>/<receiver>/cbor

In order to receive a PUBLISH message with the Topic name, each MQTT client shall subscribe to the Topic name as

follows:

• /oneM2M/req/+/<receiver>/#

• /oneM2M/resp/<originator>/#

In other clauses in the present document, topic strings are shown that do not end with /json, /xml or /cbor. However the

suffix /json, /xml, or /cbor shall always be used.

6.6 URI format
oneM2M defines an MQTT URI format to be used in the pointOfAccess attributes in several entity resource types

(e.g. <CSEBase>, <remoteCSE>, <AE>) and also in the Response Type parameter and in the notificationURI attributes

of the <subscription> resource type.

A pointOfAccess attribute contains a list of one or more strings, each of which indicates a way in which that entity can

be addressed. An entity can indicate support for MQTT by including strings in either or both of the following forms:

• mqtt://<authority>

• mqtts://<authority>

• mqtt://<authority>/<path>

• mqtts://<authority>/<path>

The <authority> component is defined in clause 3.2 of IETF RFC 3986 [8] and includes the host and optionally the port

of the MQTT Server that is to be used to access the entity in question.

The form with scheme mqtts: shall be used to show that the server requires the use of TLS when this particular point of

access is being used.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 23 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

If the <authority> does not contain a port component, then the IANA-registered MQTT ports shall be assumed. These

are 1883 in the case of mqtt: and 8883 in the case of mqtts:.

The <path>, if present, contains one or more MQTT topic levels (separated by a / if there are multiple levels). If there is

a path component in a pointOfAccess string, the path is prepended to the topic strings defined in the present document,

so for example an AE with AE-ID of "CAE01" and a pointOfAccess containing a path abc/def would subscribe to the

MQTT topic

• abc/def/oneM2M/oneM2M/req/+/CAE01/#

rather than to

• /oneM2M/req/+/CAE01/#

There shall always be a path if an MQTT URI is used in a notificationURI attribute. That path gives the entire MQTT

topic string that the notification is to be published to (with no leading /). The structure of that topic string does not have

to conform to any of the topic string patterns defined in the present document.

7 Security

7.1 Introduction
The MQTT servers authenticate the clients (both CSEs and AEs) that connect to them and authorize access to Topics

used for communicate. The clients do not authenticate each other, instead they use the MQTT server to do this.

Background. The MQTT binding makes use of one or more MQTT Servers to transport messages between AEs and

CSEs (or between CSEs) as described in clause 5. The AE/CSEs both act as MQTT Clients of an MQTT Server that

mediates delivery of messages between the two. As described in clause 6, the topic in the MQTT PUBLISH packet

either indicates the Originator's identity and Receiver's identity, or includes the Originator's Credential and the

Receiver's Identity (in the case that the Originator has not yet been assigned an identifier).

Trust and the MQTT Server. When the oneM2M binding to MQTT is used, some security functions are performed by

the MQTT Server, as described further in this clause. In particular:

1) The MQTT Server authenticates the AEs and CSEs as they connect as MQTT Clients. These MQTT Clients

themselves never directly authenticate the CSE or AE that is using another MQTT Client - instead they trust

the MQTT Server to authenticate the MQTT Clients, and trust the MQTT Server to route the messages

between the Originator and Receiver indicated in the topic.

2) The MQTT Server enforces access control policies to ensure that unidentified or unauthorized clients are not

able to publish messages to oneM2M topics or subscribe to receive messages from them.

7.2 Authorization
There are two levels of authorization in the oneM2M binding to MQTT.

• The MQTT Server is responsible for verifying identifiers, for routing messages to the expected CSE or AE, and

providing the correct Credential-ID during initial registration

The MQTT Server is responsible for verifying that the Client Identifier field in a MQTT CONNECT packet

matches the expected AE-ID, CSE-ID or Credential-ID.

The MQTT Server is responsible for controlling those topics to which an MQTT Client may subscribe and

receive published MQTT packets, and those topics to which an MQTT Client may publish MQTT packets.

Since the topic includes the Receiver's CSE-ID, the Originator can trust that the MQTT packets are routed to

and from the expected Receiver. If the topic includes the Originator's CSE-ID or AE-ID, then the Receiver can

trust that the MQTT packets are routed to and from the expected Originator.

If the topic includes the Originator's Credential-ID (which should only occur at initial registration), then the

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 24 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Receiver can use this Credential-ID to determine the CSE-ID or AE-ID or list of allowed AE-ID(s) which are

to be used in assigning a CSE-ID or AE-ID to the Originator (as described in TS-0003 [7]). This Credential-ID

can be trusted to have been verified by the MQTT Server.

• The Receiver is responsible for authorizing requests to specific resources, and assigning CSE-ID or AE-ID

during initial registration.

When the MQTT topic includes the Originator's CSE-ID or AE-ID, then the Receiver is responsible for

making access control decisions on requests to perform operations on specific resources hosted on the

Receiver. The access control decisions are dictated by the applicable accessControlPolicy resources and the

Originator's CSE-ID or AE-ID (and other factors not relevant to the present discussion). This authorization

process is as defined in the Architecture Specification [2], the Core Protocol Specification [3] and Security

Solutions specification [7].

When the MQTT topic includes the Originator's Credential-ID (which should only occur at initial registration),

then the Receiver is responsible for assigning a CSE-ID or AE-ID to the Originator (which may be dependent

on the Originator's Credential-ID).

7.3 Authentication
An MQTT Client and MQTT Server shall apply Transport Layer Security (TLS) using any of the Security Association

Establishment Frameworks in TS-0003 [7].

The Security Association Establishment Frameworks provide mutual authentication of the MQTT Client and MQTT

Server. The Security Association Establishment Frameworks are described using two main entities Entity A and

Entity B: in the case of the oneM2M binding to MQTT, Entity A is a CSE or AE using an MQTT Client, and Entity B is

an MQTT Server.

NOTE: In TS-0003 [7], Entity A is described as establishing the CSE-ID of Entity B as a result of Security

Association Establishment. The application to MQTT differs because Entity A establishes the identity of

the MQTT Server instead. However, the procedures are still applicable.

The Remote Security Provision Frameworks in TS-0003 [7] may be applied to provision a symmetric key shared by a

CSE/AE using an MQTT Client and an MQTT Server, with the MQTT Server assuming the role of the Enrolment

Target.

Identification of Originator and Receiver. TS-0003 [7] describes a variety of approaches by which successful

Security Association Establishment results in Entity B determining the CSE-ID or AE-ID or list of allowed AE-ID(s)

for the CSE/AE using the Entity A. These approaches can also be used in the oneM2M binding to MQTT.

It is assumed that the MQTT Server is configured with the information necessary to determine the CSE-ID of the

Receiver following successful Security Association Establishment with the Receiver's MQTT Client.

In some scenarios, the MQTT Server can be configured with appropriate information to verify the CSE-ID or AE-ID of

the Originator. However, in cases where the Originator has not yet been assigned its CSE-ID or AE-ID, and the MQTT

Server has also not been provided with the CSE-ID or AE-ID of the Originator, then the Receiver is responsible for

determining the applicable CSE-ID or AE-ID. In these cases, the MQTT Server forms a Credential-ID, identifying the

Credential used to authenticate the Originator, and includes this in the topic when forwarding to the initial registration

request to the Receiver's MQTT Client. The Receiver extracts the Credential-ID, and the procedures in TS-0004 [3] and

TS-0003 [7] determine the CSE-ID or AE-ID of the Originator.

Password Field Authentication. The present document does not specify use of the password field of the MQTT

CONNECT control packet. Authentication is performed using the TLS mechanisms described in TS-0003 [7].

7.4 Authorization by the MQTT Server
This procedure describes how an MQTT Server authorizes topics to which an MQTT Client may subscribe. The M2M

Service Provider is responsible for configuring the MQTT Server with the relevant information used in these

authorization decisions:

1) In the case that the MQTT Server determines that the MQTT Client represents a CSE, and if the CSE has been

assigned a CSE's SP-Relative-CSE-ID (which is denoted by <my-SP-Relative-CSE-ID>), then:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 25 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

a) the MQTT Server authorizes the MQTT Client to subscribe to the topic /oneM2M/req/+/<my-SP-

Relative-CSE-ID> and

b) for the set of <Registree ID Stem> values corresponding to SP-Relative CSE-ID or AE-ID Stem values

of zero or more CSE(s) and/or AE(s) currently registered to this CSE (and known to the MQTT Server),

the MQTT Server authorizes the MQTT Client to subscribe to the topics /oneM2M/resp/<Registree ID

Stem>/<my-SP-Relative-CSE-ID> and

c) if this CSE is registered to a CSE and the SP-Relative-CSE-ID of this CSE is <Registrar-SP-Relative-

CSE-ID > then the MQTT Server authorizes the MQTT Client to perform the following:

i) to subscribe to:

 /oneM2M/resp/<my-SP-Relative-CSE-ID>/<Registrar-SP-Relative-CSE-ID> and

ii) to publish to:

 /oneM2M/resp/<my-SP-Relative-CSE-ID>/<Registrar-SP-Relative-CSE-ID>.

2) In the case that the MQTT Server determines that the MQTT Client represents an AE which has been assigned

an S-Type AE-ID Stem equal to < AE-ID-Stem>, then:

a) If the MQTT Server determines that the AE is currently registered, and the AE's Registrar CSE has SP-

Relative-CSE-ID equal to <Registrar-SP-Relative-CSE-ID> then the MQTT Server authorizes the

MQTT Client to perform the following:

i) to subscribe to /oneM2M/resp/<AE-ID-Stem>/<Registrar-SP-Relative-CSE-ID>

ii) to publish to /oneM2M/req/<AE-ID-Stem>/<Registrar-SP-Relative-CSE-ID>

iii) to subscribe to /oneM2M/req/<Registrar-SP-Relative-CSE-ID>/<AE-ID-Stem> and

iv) to publish to /oneM2M/resp/<Registrar-SP-Relative-CSE-ID>/<AE-ID-Stem>.

b) Otherwise, the MQTT Server authorizes the MQTT Client to perform the following:

i) to subscribe to /oneM2M/reg_resp/<AE-ID-Stem-Credential-ID>/+ and

ii) to publish to /oneM2M/reg_req/<AE-ID-Stem-Credential-ID>/+

where <AE-ID-Stem-Credential-ID> is generated from <AE-ID-Stem> as per TS-0003 [7].

3) In the case that the MQTT Server determines that the MQTT Client represents a AE with C-Type AE-ID-Stem

equal to <AE-ID-Stem> (which implies that the AE is registered), and the AE's Registrar CSE has SP-

Relative-CSE-ID equal to <Registrar-SP-Relative-CSE-ID> then the MQTT Server authorizes the MQTT

Client to perform the following:

a) to subscribe to /oneM2M/resp/<AE-ID-Stem>/<Registrar-SP-Relative-CSE-ID>

b) to publish to /oneM2M/req/<AE-ID-Stem>/<Registrar-SP-Relative-CSE-ID>

c) to subscribe to /oneM2M/req/<Registrar-SP-Relative-CSE-ID>/<AE-ID-Stem> and

d) to publish to /oneM2M/resp/<Registrar-SP-Relative-CSE-ID>/<AE-ID-Stem>.

4) In all other cases, the MQTT Server authorizes the MQTT Client to perform the following:

a) to subscribe to /oneM2M/reg_resp/<Credential-ID>/+ and

b) to publish to /oneM2M/reg_req/<Credential-ID>/+

where <Credential-ID> is obtained from the Security Association Establishment procedure as described in

TS-0003 [7].

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 26 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

7.5 General Considerations
Implementors should take note of the Security considerations listed in chapter 5 of the MQTT Specification [1].

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 27 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Annex A (informative):
Overview of MQTT

A.0 Introduction
This annex provides some background information on MQTT that might be useful to a reader of the normative clauses

of the present document. See reference [1] for the definitive source of information about the protocol itself.

A.1 MQTT features
MQTT is a light weight publish/subscribe messaging transport protocol, particularly well-suited to event-oriented

interactions. It was specifically designed for constrained environments such as those found in Machine to Machine

(M2M) and Internet of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at a

premium.

MQTT includes reliability features which allow recovery from loss of network connectivity without requiring explicit

involvement of the applications that are using it, however it does require an underlying network protocol that provides

ordered, lossless, bi-directional connections.

The features of MQTT include:

• The use of the publish/subscribe message pattern which provides one-to-many message distribution and

decoupling of applications. This is described further in clause A.3.1.

• Bidirectional communications. An entity can subscribe to receive messages without having a reliable IP

address. This could be used to allow unsolicited requests to be sent to a Receiver, or an asynchronous response

to be sent to an Originator, where the Originator or Receiver does not have an externally accessible IP address.

It thus eliminates the need for long polling and can reduce the need for triggering.

• A messaging transport that is agnostic to the content of the payload. The message payload can be text or

binary.

• A Session concept that can survive loss of network connectivity and can persist across multiple consecutive

network connections. Messages can be stored and subsequently forwarded when connectivity is restored.

• Three levels of reliability (referred to as "qualities of service") for message delivery within a Session:

- "At most once", where messages are delivered according to the best efforts of the operating environment.

Message loss can occur. This level could be used, for example, with ambient sensor data where it does

not matter if an individual reading is lost as the next one will be published soon after.

- "At least once", where messages are assured to arrive but duplicates might occur. This is best suited to

messages which have idempotent semantics.

- "Exactly once", where message are assured to arrive exactly once. This level could be used, for example,

with billing systems where duplicate or lost messages could lead to incorrect charges being applied.

• A small transport overhead and protocol exchanges designed to minimize network traffic, with consequent

additional savings on battery power when compared to HTTP.

• A Retained Message option, allowing new subscribers to get the last message to have been published on a

topic prior to their subscription.

• A mechanism to notify interested parties when an abnormal disconnection occurs.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 28 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

A.2 MQTT implementations
Like HTTP, the MQTT protocol is asymmetric in that it distinguishes between two different roles: client and server.

In MQTT terms, a Client is a program or device that uses MQTT. It always establishes the Network Connection to the

Server. A Client can:

• Publish application messages that other Clients might be interested in.

• Subscribe to request application messages that it is interested in receiving.

• Unsubscribe to remove a request for application messages.

• Disconnect from the Server.

An MQTT Server is an entity that accepts connections from Clients. Unlike HTTP it generally does not run any

application logic, instead an MQTT Server acts as an intermediary between Clients publishing application messages and

the Clients which have subscribed to receive them.

The MQTT specification [1] recommends the use of IANA registered ports 1883 (MQTT over raw TCP/IP) and 8883

(MQTT running over TLS).

Although the MQTT protocol is relatively simple to implement, applications normally make use of pre-built

implementations:

• The applications themselves link to libraries that provide the MQTT client functionality. Libraries are

available for a variety of programming languages and operating environments.

• The MQTT server functionality can be provided by a standalone software process (possibly running on a

server that is remote from the clients), a hardware appliance or a cloud-hosted MQTT service.

The Eclipse foundation through their M2M working group, provides open source MQTT client code via its Paho

Project, and an open source server implementation via its Mosquitto project. Other open source and commercial

implementations are also available.

A.3 MQTT Details

A.3.1 Addressing a message - Topics and Subscriptions
The MQTT protocol is based on the principle of publishing messages and subscribing to topics, or "pub/sub". Multiple

clients connect to an MQTT server and subscribe to topics that they are interested in by sending an MQTT request

protocol packet to the server. Clients also connect to the server and publish messages to the server, each message being

associated with a topic. Many clients can subscribe to the same topics. The combination of the MQTT protocol and its

server provides a simple, common interface for clients to connect to. A publisher can publish a message once and it be

received by multiple subscribers.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 29 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure A.3.1-1: MQTT publish-subscribe messaging

A Message in MQTT is associated with a topic when it is published. Topics are structured into topic trees, which are

treated as hierarchies, using a forward slash (/) as a separator. This allows arrangement of common themes to be

created. Topics and topic trees can be created administratively, although its more common for a server to create a topic

on-demand (subject to security policies) when a client first attempts to publish or subscribe to it.

A client registers its interest in topics by providing one or more topics filters. A topic filter can be a simple topic name,

or it can contain special "wildcard" characters, which allow clients to subscribe to multiple topics at once, within a

single level or within multiple levels in a topic tree.

A.3.2 Reliability
MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the server & client will try to ensure

that a message is received. Messages can be sent at any QoS level, and this affects the way the message is transmitted

from the client to the server. When a client requests a subscription, it requests the maximum QoS at which it wants to

receive messages on that subscription. This controls the way that messages matching that subscription are transmitted

from the server to that client. The QoS used to transmit a message from the server is always less than or equal to the

QoS used to transmit it to the server. For example, if a message is published at QoS 2 and a client is subscribed with

QoS 0, the message will be delivered to that client with QoS 0. If a second client is also subscribed to the same topic,

but with QoS 2, then it will receive the same message but with QoS 2. For a second example, if a client is subscribed

with QoS 2 and a message is published on QoS 0, the client will receive it on QoS 0.

QoS 0 messages are the least reliable. They are sent from client to server (or server to client) with no acknowledgement

flowing in the opposite direction. A server is free to discard such messages.

QoS 1 is intended for idempotent messages. These messages are transmitted with a short packet ID. When a client (or

server) receives such a message it sends an acknowledgement packet back to the message sender. The sender is required

to save a copy of that message until it receives the acknowledgement, and if there is a loss of network connectivity

before it receives that acknowledgement it is required to resend the message when connectivity is restored.

QoS 2 provides exactly once delivery. It uses a two-step acknowledgement protocol, in which both steps can be

repeated an arbitrary number of times (if there is a loss of connectivity) without causing duplication of the original

application message. Both client and server are required to save a copy of the message during this process.

In summary, the higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth

requirements.

In order to be able to continue with the QoS1 or QoS2 delivery protocols after a network reconnection, the server needs

to have a way of distinguishing the individual clients that connect to it. It does this by means of an identifier called a

Client Id. A client provides this Id when it first connects and the server records it and uses it as a key to any server-side

state (such as the status of incomplete message delivery) associated with that client. When the client reconnects it

presents the same Id, and that allows message delivery to complete. The client Id in effect represents the Id of the

MQTT Session that is maintained between the client and the server.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 30 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

A.3.3 Retained Messages
When a client publishes a message it can request that the message be retained. This means that the server will keep the

message even after sending it to all current subscribers. If a new subscription is made that matches the topic of the

retained message, then the message will be sent to the client. At most one such message is retained for any single topic.

This is useful as a "last known good" mechanism. If a topic is only updated infrequently (such as for "report by

exception"), then without a retained message, a newly subscribed client might have to wait a long time to receive an

update. With a retained message, the client will receive an instant update.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 31 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

History
Publication history

V1.0.1 30-Jan-2015 Release 1 - Publication

V2.4.1 30-Aug-2016 Release 2 - Publication

V2.7.1 12-Mar-2018 Release 2A - Publication

	TS-M2M-0010-MQTT_protocol_binding-v_2_7_1.pdf
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Conventions
	5 Introduction
	5.1 Use of MQTT
	5.2 Binding overview
	5.2.1 Introduction
	5.2.2 Scenarios
	5.2.2.1 MQTT server co-located scenario
	5.2.2.2 MQTT server independently-located scenario

	5.2.3 Configurations
	5.2.3.1 AE to IN
	5.2.3.2 AE to MN
	5.2.3.3 MN to IN
	5.2.3.4 AE to MN to IN
	5.2.3.5 AE to IN (Independent scenario)
	5.2.3.6 AE to MN (Independent scenario)
	5.2.3.7 MN to IN (Independent scenario)
	5.2.3.8 AE to MN to IN (Independent scenario)

	6 Protocol Binding
	6.1 Introduction
	6.2 Use of MQTT
	6.3 Connecting to MQTT
	6.3.0 Introduction
	6.3.1 Variable header of MQTT CONNECT Packet
	6.3.2 Payload of MQTT CONNECT Packet
	6.3.3 Application of MQTT CONNECT Packet

	6.4 Sending and Receiving Messages
	6.4.1 Request and Response Messages
	6.4.1.0 Introduction
	6.4.1.1 Fixed header of MQTT PUBLISH Packet
	6.4.1.2 Variable header of MQTT PUBLISH Packet
	6.4.1.3 Payload of MQTT Control PUBLISH Packet

	6.4.2 Topic Name for Requests
	6.4.3 Listening for and responding to a Request
	6.4.4 Initial Registration
	6.4.5 Request/Response Message Flow

	6.5 Primitive Mapping
	6.5.1 Request primitives
	6.5.2 Response primitives
	6.5.3 Serialization Format Negotiation
	6.5.4 Content-type

	6.6 URI format

	7 Security
	7.1 Introduction
	7.2 Authorization
	7.3 Authentication
	7.4 Authorization by the MQTT Server
	7.5 General Considerations
	Annex A (informative): Overview of MQTT

	A.0 Introduction
	A.1 MQTT features
	A.2 MQTT implementations
	A.3 MQTT Details
	A.3.1 Addressing a message - Topics and Subscriptions
	A.3.2 Reliability
	A.3.3 Retained Messages

	History

