

TR-M2M-0039v2.0.0

Developer guide-SDT-based
implementation

2018 年 5 月 11 日制定

一般社団法人

情報通信技術委員会

THE TELECOMMUNICATION TECHNOLOGY COMMITTEE

本書は、一般社団法人情報通信技術委員会が著作権を保有しています。
内容の一部又は全部を一般社団法人情報通信技術委員会の許諾を得ることなく複製、

転載、改変、転用及びネットワーク上での送信、配布を行うことを禁止します。

 i

TR-M2M-0039v2.0.0

Developer guide-SDT-based implementation

＜参考＞ [Remarks]

１．国際勧告等の関連 [Relationship with international recommendations and standards]

 本技術レポートは、oneM2M で作成された Technical Report 0039 (Version 2.0.0) に準拠している。

[This Technical Report is transposed based on the Technical Report 0039 (Version 2.0.0) developed by oneM2M.]

２．作成専門委員会 [Working Group]

 oneM2M 専門委員会 [oneM2M Working Group]

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 1 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

O NEM2M
TECHNICAL REPO RT

Document Number TR-0039-V-2.0.0

Document Name: Developer guide: Interworking Proxy using SDT

Date: 2018-03-12

Abstract: The document describes how a developer can easily implement interworking with

non-oneM2M devices using the SDT (Smart Device Template) defined in TS-0023

(Home appliances Information Model).

Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept

no liability for any use of this report.

The present document has not been subject to any approval process by the oneM2M Partners Type 1.

Published oneM2M specifications and reports for implementation should be obtained via the oneM2M

Partners' Publications Offices.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 2 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the

need for a common M2M Service Layer that can be readily embedded within various

hardware and software, and relied upon to connect the myriad of devices in the field with

M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2018, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.

The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the

appropriate degree of experience to understand and interpret its contents in accordance with

generally accepted engineering or other professional standards and applicable regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS

TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO

REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF

INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE

LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY

THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN

NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER

INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 3 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents
1 Scope .. 5

2 References .. 5
2.1 Normative references ... 5
2.2 Informative references ... 5

3 Abbreviations ... 5

4 Conventions .. 6

5 Use Case ... 6
5.0 Introduction.. 6
5.1 Abstraction description via the lightbulbs example ... 6

6 Introduction to IPE and SDT .. 7
6.1 Introduction to IPE .. 7
6.2 Introduction to SDT ... 7
6.2.1 SDT data model description ... 7
6.2.2 SDT Device example: deviceLight .. 8
6.3 IPE and SDT in oneM2M tree ... 9

7 Functional architecture ... 10

8 Procedures and call flows ... 11
8.1 Introduction.. 11
8.2 Call Flows from perspective of device adapter developer ... 12
8.2.1 IPE-AE registration with MN-CSE .. 12
8.2.2 SDT Device resource tree creation in MN-CSE ... 12
8.3 Call flows from perspective of utility application developer ... 14
8.3.1 Application Entity registration in IN/MN-CSE .. 14
8.3.2 Discovery Requests .. 14
8.3.3 Control & monitor devices ... 15
8.3.3.1 Getting URLs for resources .. 15
8.3.3.2 DataPoint value retrieving .. 16
8.3.3.3 DataPoint value changing... 17
8.3.3.4 Action triggering .. 18
8.3.3.5 Subscription mechanism .. 19

9 Implementation .. 22
9.1 Introduction.. 22
9.2 Assumptions .. 22
9.2.0 Introduction .. 22
9.2.1 Addressing for Entities ... 22
9.3 Developer of the device adapter (IPE-AE) .. 23
9.3.0 Introduction .. 23
9.3.1 IPE-AE registration with MN-CSE .. 23
9.3.2 SDT Device resource tree creation in MN-CSE (Resources registration) .. 24
9.3.3 Implementation of abstract SDT Device example: deviceLight ... 25
9.3.4 Instance of SDT Device example: Hue Light ... 29
9.4 Developer of the utility application ... 31
9.4.0 Introduction .. 31
9.4.1 Application Entity registration in IN/MN-CSE .. 32
9.4.2 Discovery proccess ... 32
9.4.3 Control & monitor devices ... 33
9.4.3.0 Introduction .. 33
9.4.3.1 Getting URLs for resources .. 33
9.4.3.2 DataPoint value retrieving .. 34
9.4.3.3 DataPoint value changing... 34
9.4.3.4 Action triggering .. 34
9.4.3.5 Subscription mechanism .. 35

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 4 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

10 Conclusion .. 36

History .. 37

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 5 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope
The present document describes how a developer can quickly and easily implement interworking with non-oneM2M

devices using the SDT (Smart Device Template) defined in TS-0023 [i.2] (Home appliances Information Model). As an

example, a scenario of an application controlling and monitoring a connected lamp, already commercially available on

the market, is proposed. The goal is to describe with an example the methodology for building this interworking,

allowing the developers to apply it to any other non-oneM2M devices using the abstraction layer provided by SDT.

To focus on the topics described above, the security aspect is not considered in the scope of this developer guide,

especially Access Control Policy issue is not discussed

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

referenced document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the

user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[i.2] oneM2M TS-0023: "Home Appliances Information Model and Mapping".

[i.3] oneM2M TS-0001: "Functional Architecture".

[i.4] oneM2M TS-0004: "Service Layer Core protocol Specification".

[i.5] oneM2M TS-0009: "HTTP Protocol Binding".

3 Abbreviations
For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

ADN-AE AE which resides in the Application Dedicated Node

AE Application Entity

CSE Common Services Entity

CSE-ID Common Service Entity Identifier

IN Infrastructure Node

IN-AE Application Entity that is registered with the CSE in the Infrastructure Node

IN-CSE CSE which resides in the Infrastructure Node

MN-AE Application Entity that is registered with the CSE in Middle Node

MN-CSE CSE which resides in the Middle Node

URI Uniform Resource Identifier

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 6 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

4 Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be

interpreted as described in the oneM2M Drafting Rules [i.1].

5 Use Case

5.0 Introduction
This clause describes a use case which helps to understand the devices abstraction layer concept of oneM2M through

the combined use of the SDT-based (Smart Device Template) Information Model specified in oneM2M TS-0023 [i.2]

and the Interworking Proxy Entity.

5.1 Abstraction description via the lightbulbs example
This guide is based on the following use case: an application on a Gateway, Cloud/Server, or Smartphone wants to

monitor and control lightbulbs. Due to the abstraction layer provided by oneM2M, the monitoring and controlling

processes can be performed independently from underlying connectivity technologies. This tutorial is based on the

example of Philips Hue lightbulbs (these lightbulbs require dedicated bridge for connection with Gateway). Figure 5.1-1

presents the general architecture of the use case.

NOTE: The terms of use of Philips Hue API are available at https://developers.meethue.com/documentation/terms-use.

Cloud/Server

Smartphone

Gateway
Bridge

Bulb #1 Bulb #2

Figure 5.1-1: Overview of the lightbulbs use case

The main components are introduced as follows:

• The lightbulbs are deployed in a home and are attached to a home gateway via Philips Hue Bridge.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 7 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• The Gateway communicates with a Cloud/Server platform allowing the lightbulbs to be controlled remotely by

the Smartphone.

• The Cloud/Server platform and Gateway supports a set of services to enable the Smartphone to more easily

control and monitor the lightbulbs in the home. Some examples of services include device abstraction layer,

registration, discovery, data management, group management, subscription/notification, etc.

• The Smartphone hosts an application used to remotely control and monitor the lightbulbs in the home and

supports the following capabilities:

- Discovery of the lightbulbs deployed in the home.

- Sending commands to change light state i.e. switch on/off and change colour.

- Receive state of a lightbulb.

6 Introduction to IPE and SDT

6.1 Introduction to IPE
An IPE (Interworking Proxy Entity) is a specialized AE (Application Entity) that allows the oneM2M system to interact

with any non-oneM2M system, in a seamless way, through the Mca interface. It has the capability to remap the specific

data model to oneM2M resources (<AE>, <container>, <flexContainer>, etc.) and maintain bidirectional

communication with the non-oneM2M system.

6.2 Introduction to SDT

6.2.1 SDT data model description
The SDT (Smart Device Template) is a reference template to model most home appliance functions in a unified way

which is a result of consensus amongst various SDOs and industry alliances. Abstraction from the various underlying

home-area network technologies and getting an unified way of controlling/commanding the appliances are among the

key goals of the SDT.

The SDT approach is to define re-usable basic functions (or services) (labelled "ModuleClass" in Figure 6.2-1) which

can represent the typical functions found, for example, in many home automation systems, such as "on/off", "dim a

lamp", "receive events from binary sensor", "read data from sensor", etc.

C
B

A

Figure 6.2.1-1: SmartHome Device Template for a generic device

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 8 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

The SDT supports the use of a set of templates for generic devices or appliances (e.g. for a dimmable lamp, a basic

washing machine, etc., which would be specific instances of the "Device" object) which form the basis of APIs used by

application developers. These templates can also be referenced by manufacturers creating XML documents to describe

their specific products. For example, the SDT enables specification of a generic washing machine template, with on/off,

set-wash-temperature, pause and a few other commands, which could be referenced by a manufacturer as the schema

for a XML description of a basic model washing machine. The SDT allows for vendor-specific additional commands

(ModuleClasses) to suit specific product types.

The SDT is available under Apache License 2 at oneM2M's GitLab: https://git.onem2m.org/MAS/SDT

6.2.2 SDT Device example: deviceLight
A light is a device that is used to control the state of an illumination device. This Device has one mandatory

binarySwitch Module and the following optional Modules: faultDetection, runState, colour, colourSaturation,

brightness.

Table 6.2.2-1: Modules of deviceLight Device model (from [1])

Module Instance Name Module Class Name Optional Description

faultDetection faultDetection true See clause 5.3.16
binarySwitch binarySwitch false See clause 5.3.5
runState runState true See clause 5.3.28
colour colour true See clause 5.3.10
colourSaturation colourSaturation true See clause 5.3.11
brightness brightness true See clause 5.3.8

The faultDetection ModuleClass provides information about whether a fault has occurred in the actual device.

Table 6.2.2-2: DataPoints of faultDetection ModuleClass (from [1])

Name Type Readable Writable Optional Documentation

status xs:boolean true false false Status of fault detection.
code xs:integer true false true Code of the fault.
description xs:string true false true Message of the fault.

The binarySwitch ModuleClass provides capabilities to control and monitor the state of power.

Table 6.2.2-3: Actions of binarySwitch ModuleClass (from [1])

Return
Type

Name Argument Optional Documentation

none toggle none true Toggle the switch.

Table 6.2.2-4: DataPoints of binarySwitch ModuleClass (from [1])

Name Type Readable Writable Optional Documentation

powerState xs:boolea
n

true true false The current status of the binarySwitch. "True"
indicates turned-on, and "False" indicates turned-
off.

The runState ModuleClass provides capabilities to control and monitor machine state of appliances.

https://git.onem2m.org/MAS/SDT

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 9 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6.2.2-5: DataPoints of runState ModuleClass (from [1])

Name Type Readable Writable Optional Documentation

currentMachineSt
ate

hd:machineState true true false Currently active machine state.

machineStates list of
hd:machineState

true false false List of possible machine states the
device supports (see clause 5.5.15)

progressPercenta
ge

float true false true Indication of current progress in
percentage

The colour ModuleClass provides the capabilities to set the value of Red, Green, Blue for the colour device.

Table 6.2.2-6: DataPoints of colour ModuleClass (from [1])

Name Type Readable Writable Optional Documentation

red xs:integer true true false The R value of RGB; the range is [0,255]
green xs:integer true true false The G value of RGB; the range is [0,255]
blue xs:integer true true false The B value of RGB; the range is [0,255]

The colourSaturation ModuleClass describes a colour saturation value. The value is an integer. A colourSaturation has a

range of [0,100]. A colourSaturation value of 0 means producing black and white images. A colourSaturation value of

50 means producing device specific normal colour images. A colourSaturation value of 100 means producing device

very colourfull images.

Table 6.2.2-7: DataPoints of colourSaturation ModuleClass (from [1])

Name Type Readable Writable Optional Documentation

colourSaturation xs:integer true true false The status of colour saturation level.

The brightness ModuleClass describes the brightness of a light e.g. from a lamp. Brightness is scaled as a percentage. A

lamp or a monitor can be adjusted to a level of light between very dim (0 % is the minimum brightness) and very bright

(100 % is the maximum brightness).

Table 6.2.2-8: DataPoints of brightness ModuleClass (from [1])

Name Type Readable Writable Optional Documentation

brightness xs:integer true true false The status of brightness level in percentage.

6.3 IPE and SDT in oneM2M tree
In reference to oneM2M terminology, when a new device is discovered the CSE should register it and map its SDT-

based representation to oneM2M common resources according to the rules defined in TS-0023 [i.2].

To allow current non-oneM2M devices ("NoDN", Non-oneM2M Device Node) to connect to the oneM2M system the

specification provides "Interworking/Integration of non-oneM2M solutions and protocols" section (Annex F of

oneM2M TS-0023 [i.2]). Figure 6.3-1 shows SDT in oneM2M architecture.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 10 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ASN or MN

AE:
Inter-working Proxy
(SDT mapping inside)

CSE

Utility Application

Philips Hue Bridge

NoDN

Hue REST API

Mca

Mca

IN

CSEMcc

SDT Data model
Awareness

Specific Data model
Awareness

Philips Hue Bulb A

NoDN

Philips Hue Bulb B

NoDN

Figure 6.3-1: Translation of non-oneM2M Data Model to SDT Data Model via the IPE

7 Functional architecture
Clause 7 describes how the elements of this use case are represented by corresponding oneM2M architectural entities.

Figure 7-1 presents the functional architecture of this use case.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 11 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Mcc
Mca

Cloud/Server

Smartphone

Bridge

Bulb #1 Bulb #2

IN-CSE

ADN-AE-1

MN-CSE

NoDN

NoDN NoDN

AE: IPE

Gateway

Hue Rest API

Non-oneM2M
nodes

oneM2M
nodes

Figure 7-1: oneM2M functional architecture of the bulbs use case

There are two sections in the functional architecture of this use case. On the left side of the red dashed line there is the

non-oneM2M section based on Philips Hue architecture. It consists of two Hue Bulbs and Hue Bridge.

On the right side there is the oneM2M architecture section which consists of MN-CSE (Middle Node - Common

Service Entity) and AE: IPE (Application Entity: Interworking Proxy Entity) on the Gateway, IN-CSE (Infrastructure

Node CSE) on the Cloud/Server, ADN-AE-1 (Application Dedicated Node) on the Smartphone and Mcc and Mca

reference points.

Mca reference point is used to interface an AE and a CSE together. Mcc reference point is used to interface CSEs. In

this use case Mca is used between ADN-AE-1 on the Smartphone and IN-CSE on the Cloud/Server, while Mcc is used

between MN-CSE on the Gateway and IN-CSE on the Cloud/Server.

AE: IPE makes non-oneM2M devices visible to oneM2M platform, so it allows ADN-AE-1 on the Smartphone to

remotely control and monitor the bulbs. AE: IPE mechanism is described in details in clause 6.3.

8 Procedures and call flows

8.1 Introduction
The deployment of the oneM2M standard in the present use case requires procedures that are classified as follows:

• Registration: AE registration with CSE: IPE-AE with MN-CSE, ADN-AE with IN-CSE.

• Resources creation: a set of <flexContainer> resources creation to represent SDT Device in a resource tree.

• Discovery of resources with filter criteria: discovery of resources with given containerDefinition attribute

filtered with filter criteria to receive associated URI.

• Discovery of children resources: discovery of a resource tree associated with particular SDT Device to get

access to particular ModuleClass, DataPoint, Action.
• Get resource: get value of DataPoints through sending RETRIEVE request

• Change resource: changing a DataPoint value or triggering an Action through sending UPDATE request

• Subscription and notification mechanism: monitor DataPoints values changes through subscription and

notification mechanism

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 12 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

In this developer guide there is an assumption that MN-CSE is registered with IN-CSE. More assumptions are listed in

clause 9.2.

8.2 Call Flows from perspective of device adapter developer

8.2.1 IPE-AE registration with MN-CSE
The procedure to register device adapter (IPE-AE) with gateway (MN-CSE) is as follows:

• Device adapter (IPE-AE) sends registeration request to Gateway (MN-CSE)

• Gateway (MN-CSE) responds with status of the registration and Content-Location header for the registered

entity

IPE-AE MN-CSE

Device adapter (IPE-AE)
registration with
gateway (MN-CSE)

1

Gateway (MN-CSE)
responds with status
and Content-Location

2

Figure 8.2.1-1: AE registration with CSE request

8.2.2 SDT Device resource tree creation in MN-CSE
The procedure to create resource tree for particular SDT Device (deviceLight in this use case) is as follows:

• Device adapter (IPE-AE) sends a CREATE request to gateway (MN-CSE) to create <flexContainer> for SDT

Device.

• Gateway (MN-CSE) responds with URI of the new <flexContainer> for SDT Device.

• Device adapter (IPE-AE) sends a CREATE reqest to gateway (MN-CSE) to create a <flexContainer> for a

single Module with associated customAttributes (DataPoints). Please note that there is sent one such request

per each Module.

• Gateway (MN-CSE) responds with URI for created Module.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 13 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• Device adapter (IPE-AE) sends a CREATE request to gateway (MN-CSE) to create <flexContainer> for a

single Action. The <flexContainer> which represents Action is set as a child of <flexContainer> which

represents Module.

• Gateway (MN-CSE) responds with URI for created Action.

IPE-AE MN-CSE

Creation of
flexContainer for
SDT Device (Bulb#1)

1

Response with new
device URI

2

Creation of
flexContainer for
ModuleClasses with
DataPoints instances
on SDT Device
(Bulb#1)

3

Response with
Module URI

4

Creation of
flexContainer for
Action on
ModuleClass (Toggle
Action in
BinarySwitch
Module)

5

Response with new
Action URI

6

Figure 8.2.2-1: Creation of resource tree for SDT Device

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 14 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

8.3 Call flows from perspective of utility application developer

8.3.1 Application Entity registration in IN/MN-CSE
The procedure to register utility application (ADN-AE-1) with server (IN-CSE) is as follows:

• Utility application (ADN-AE-1) sends registration request to gateway (IN-CSE)

• Server (IN-CSE) responds with status of the registration and Content-Location header for the registered entity

ADN-AE-1 IN-CSE

ADN-AE-1 registration
with server (IN-CSE)

1

Server (IN-CSE)
responds with status
and Content-Location

2

Figure 8.3.1-1: AE registration with CSE request

8.3.2 Discovery Requests
The procedure to discover SDT Device is as follows:

• Utility application (ADN-AE-1) sends a RETRIEVE request to server (IN-CSE) including filter criteria

conditions, especially it could be a containerDefinition attribute

(e.g. org.onem2m.home.devices.deviceLight)

• Server (IN-CSE) responds with list of URIs of the discovered resources, if any (especially URI for deviceLight

which represents a bulb).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 15 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ADN-AE-1 IN-CSE

Discovery (GET) with
filter criteria

1

URIs of discovered
<flexContainer>
resources

2

Figure 8.3.2-1: Discovery of SDT Device with filter criteria

8.3.3 Control & monitor devices

8.3.3.1 Getting URLs for resources
The procedure to retrieve needed URIs for Modules which are associated with particular Device is as follows:

• Utility application (ADN-AE-1) sends a request to server (IN-CSE) with URI of the Device.

• Server (IN-CSE) responds with a list of the Modules URIs.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 16 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ADN-AE-1 IN-CSE

Discovery of
Modules URIs

1

Modules list and
their URIs

2

Figure 8.3.3.1-1: Discovery of Modules related to SDT Device

8.3.3.2 DataPoint value retrieving
Retrieving value of a DataPoint is possible only through retrieving all DataPoints which belong to particular

ModuleClass.

The procedure to get values of all DataPoints which belong to particular ModuleClass is as follows:

• Utility application (ADN-AE-1) sends a RETRIEVE request to server (IN-CSE) with information which

ModuleClass's DataPoints should be retrieved.

• Server (IN-CSE) responds with current values of all DataPoints which belong to the ModuleClass that was

requested..

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 17 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ADN-AE-1ADN-AE-1 IN-CSEIN-CSE

DataPoint value
RETRIEVE request

1

Server responds with
current value of
DataPoint

2

Figure 8.3.3.2-1: DataPoint retrievement

8.3.3.3 DataPoint value changing
The procedure to change DataPoint value is as follows:

• Utility application (ADN-AE-1) sends an UPDATE request to server (IN-CSE) with <flexContainer> which

contains the new value of the DataPoint. There is also a possibility to change more than one DataPoint of

particular ModuleClass in a single request (in this case the <flexContainer> contains new values of all needed

DataPoints.

• Server (IN-CSE) responds with status of DataPoint's UPDATE operation

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 18 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ADN-AE-1 IN-CSE

DataPoint state change
request

1

Server responds with
status of DataPoint
state change

2

Figure 8.3.3.3-1: Change value of a DataPoint

8.3.3.4 Action triggering
The procedure to trigger an Action with no arguments is as follows:

• Utility application (ADN-AE-1) sends an UPDATE request to server (IN-CSE) with empty <flexContainer>.

• Server (IN-CSE) responds with status of UPDATE operation

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 19 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ADN-AE-1 IN-CSE

Request with empty
<flexContainer> for
Action triggering

1

Server responds
with status

2

Figure 8.3.3.4-1: Action triggering procedure

8.3.3.5 Subscription mechanism
Following diagrams show four parts of subscription mechanism: subscription creation, listener's status verification,

notification message triggered by DataPoint value change and subsription deletion.

The procedure of creating a <subscription> resource is as follows:

• Utility application (ADN-AE-1) sends a CREATE request to server (IN-CSE).

• Server (IN-CSE) responds with all parameters of created <subscription> resource.

ADN-AE-1 IN-CSE

Creation of
<subscription>
resource on a
specific Module Class

1

Responds with all
parameters of
<subscription>
resource

2

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 20 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Figure 8.3.3.5-1: Subscription creation procedure

There's a mechanism that allows Server to check listener's availability. The procedure of listener's (ADN-AE-1) status

verification is as follows:

• Server (IN-CSE) sends verification request to listener (ADN-AE-1).

• Listener (ADN-AE-1) responds with HTTP 200 OK status.

Listener responds
with HTTP 200 OK
status

Server sends
verification request

1

1

ADN-AE-1 IN-CSE

Figure 8.3.3.5-2: Listener's status verification procedure

A change of DataPoint’s value triggers a notification message with new DataPoint value that is sent to listener. The

procedure of notification mechanism is as follows:

• DataPoint value change occurs.

• Server (IN-CSE) sends to utility application (ADN-AE-1) notification with new DataPoint value.

• Utility application (ADN-AE-1) sends confirmation of receiving the notification.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 21 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

DataPoint value change
occurred

Notification with
new DataPoint value

Responds with
confirmation of
receiveing the
notification

2

1

ADN-AE-1 IN-CSE

Figure 8.3.3.5-3: Notification mechanism procedure

The procedure of deletion of a <subsription> resource is as follows:

• Utility application (ADN-AE-1) sends a DELETE request to server (IN-CSE).

• Server (IN-CSE) responds with deletion confirmation.

Responds with
deletion
confirmation

Deletion of
<subscription>
resource

1

2

ADN-AE-1 IN-CSE

Figure 8.3.3.5-4: Deletion of <subscription> resource procedure

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 22 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

9 Implementation

9.1 Introduction
Clause 9 provides implementation examples from two different perspectives: developer of a device adapter (AE: Inter-

working Proxy) in clause 9.3 and developer of a utility application in clause 9.4.

Figure 9.1-1: Implementation of TS-0023 [i.2] Module Classes for the Hue bulb use case

9.2 Assumptions

9.2.0 Introduction
• MN-CSE is registered with IN-CSE

• Philips Hue Bridge and MN-CSE are on the same LAN

• Philips Hue Bulbs are paired with the Philips Hue Bridge

• Philips Hue Bridge is not directly represented in oneM2M resource tree, but through its associated IPE

• Access Control Policy issue isn’t discussed here because it's a security aspect which isn’t considered in the

scope of this developer guide

9.2.1 Addressing for Entities
Each oneM2M entity including AE and CSE are addressable with correct host address that can be IP addresses or

FQDN addresses resolved to IP addresses by DNS network services according to addressing rules specified in oneM2M

standards.

The IN-CSE and MN-CSE entities presented in this use case are addressable with the following identifiers.

• IN-CSE:

 CSE-ID: /in-cse

 resourceName of IN-CSE’s CSEBase resource: server

 IN-CSE FQDN: incse.provider.com

 IN-CSE HTTP port: 8080

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 23 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

• MN-CSE:

 CSE-ID: /mn-cse

 resourceName of MN-CSE’s CSEBase resource: home_gateway

 MN-CSE FQDN: mncse.provider.com

 MN-CSE HTTP port: 8080

The host of Utility Application (ADN-AE-1) has following IP address: 192.168.10.1.

9.3 Developer of the device adapter (IPE-AE)

9.3.0 Introduction
This clause describes implementation process from the IPE-AE developer point of view.

Figure 9.3.0-1 Scope of 9.3 Developer of the device adapter section

9.3.1 IPE-AE registration with MN-CSE
The IPE-AE with MN-CSE registration is shown in the following procedure.

POST /home_gateway HTTP/1.1

Host: mncse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml;ty=2

X-M2M-RI: home_gateway-16346

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 24 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

<?xml version="1.0" encoding="UTF-8"?>

<m2m:ae xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="ipe_ae">

 <api>ipe.lightControl</api>

 <rr>true</rr>

</m2m:ae>

HTTP Response:

201 Created

X-M2M-RSC: 2001

X-M2M-RI: home_gateway-16346

Content-Location: /mn-cse/ae-CAE340304178

In response there's Content-Location header which indicates registrated AE address which is necessary to create device

resource tree.

AE registration process is comprehensively described in 10.2.2.1 TS-0001 clause.

9.3.2 SDT Device resource tree creation in MN-CSE (Resources
registration)

This clause describes creation of device resource tree which consists of Device, ModuleClasses and Actions. Firstly, a

Device resource is created. Device is mapped to flexContainer resource, so a flexContainer resource is created.

The following request creates flexContainer resource for deviceLight. In response there is a Content-Location header

which indicates the new Device address to beused later in ModuleClass creation.

POST /~/mn-cse/ae-CAE340304178 HTTP/1.1

Host: mncse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml;ty=28

X-M2M-RI: home_gateway-12

<?xml version="1.0" encoding="UTF-8"?>

<hd:devLt xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="deviceLight">

 <cnd>org.onem2m.home.device.deviceLight</cnd>

</hd:devLt>

HTTP Response:

201 Created

X-M2M-RSC: 2001

X-M2M-RI: home_gateway-12

Content-Location: /mn-cse/DL3404345178

Flex Container creation procedure is comprehensively described in 10.2.4.16 TS-0001.

To create ModuleClass on Device, the creation request is sent to Device address taken from Device creation request

response. In SDT, ModuleClasses are mapped to flexContainer and DataPoints are mapped to customAttribute. To

create binarySwitch ModuleClass, the following request is sent.

POST /~/mn-cse/DL3404345178 HTTP/1.1

Host: mncse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml;ty=28

X-M2M-RI: home_gateway-43

<?xml version="1.0" encoding="UTF-8"?>

<hd:binSh xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="binarySwitch">

 <cnd>org.onem2m.home.moduleclass.binaryswitch</cnd>

 <powSe type="xs:boolean">false</powSe>

</hd:binSh>

http://www.onem2m.org/xml/protocols
http://www.onem2m.org/xml/protocols
http://www.onem2m.org/xml/protocols

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 25 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

HTTP Response:

201 Created

X-M2M-RSC: 2001

X-M2M-RI: home_gateway-43

Content-Location: _/mn-cse/MC43546456

In response there's Content-Location header which indicates created ModuleClass address which is used later to create

Toggle Action and to modificate state of particular DataPoint.

In SDT, Actions are also mapped to FlexContainer. To add new Action to ModuleClass, the the following request is

sent to the ModuleClass address.

POST /~/mn-cse/MC43546456 HTTP/1.1

Host: mncse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml;ty=28

X-M2M-RI: home_gateway-44

<?xml version="1.0" encoding="UTF-8"?>

<hd:toggle xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="toggle">

<cnd>org.onem2m.home.moduleclass.binaryswitch.toggle</cnd>

</hd:toggle>

HTTP Response:

201 Created

X-M2M-RSC: 2001

X-M2M-RI: home_gateway-44

Content-Location: /mn-cse/AC-54783722

In response there's Content-Location header which indicates new Action address which is used later to trigger Action

(described in clause 9.4.3).

9.3.3 Implementation of abstract SDT Device example: deviceLight
This clause presents a “pseudo code” implementation of abstract SDT Device based on deviceLight example. Please

note that this pseudo-code is similar to Java but should be considering just an example, it isn’t attend to be compilable.

DeviceLight class is an implementation of deviceLight model, it inherits from Device class and has 8 fields relevant for

8 ModuleClasses of deviceLight model. DeviceLight has a contructor which creates objects for ModuleClasses and

defines Name and Domain.

/**

 *

 * Stores information about name and domain of the device

 *

*/

class Device{
 string name;
 string domain;

 public Device(string name, string domain){
 name = name;
 domain = domain;
 }

http://www.onem2m.org/xml/protocols

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 26 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

}

/**
* DeviceLight class is an implementation of deviceLight model, it inherits from Device
* class, and has 8 fields relevant for 8 ModuleClasses of deviceLight model.
* DeviceLight has a contructor which creates objects for ModuleClasses and defines
* Name and Domain.
*/

class DeviceLight extends Device{
 FaultDetection faultDetection;

 BinarySwitch binarySwitch;
 RunMode runMode;
 Colour colour;
 ColourSaturation colourSaturation;
 Brightness brightness;

 public DeviceLight(string name, string domain){
 super(name, domain);
 }
}

/**
* Module consists of 3 fields which are relevant to DataPoints parameters in SDT.
*/
class Module{
 boolean optional;
 string name;

string domain;

public Module(string name, string domain, boolean optional){
 this.name = name;
 this.optional = optional;
 this.domain = domain;
 }
}

/**

* BinarySwitch class is considered as an example of ModuleClass implementation,

* it inherits from Module. It has fields relevant for DataPoints and Actions

* which are defined in SDT data model. Constructor of BinarySwitch creates powerState

* DataPoint. BinarySwitch class has also setToggle function which allows to set toogle

* action which is not mandatory.

*/
class BinarySwitch extends Module {

BooleanDataPoint powerState;
Toggle toggle;

public BinarySwitch(string moduleName, string moduleDomain, BooleanDataPoint

powerStateArgument){
 super(moduleName, moduleDomain, false);

 powerState = powerStateArgument;
 powerState.optional = false;
 powerState.readable = true;
 powerState.writeable = true;

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 27 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 powerState.documentation = "The current status of the binarySwitch. "True"
indicates turned-on, and "False" indicates turned-off";
}

void setToggle(Toggle toggleArgument){
 toggle = toggleArgument;
 toggle.optional = true;
}

}

/**

 * Colour extends Module and has 3 fields relevant to Colour ModuleClass DataPoints.

* In the constructor of Colour class there are DataPoints assingments with their

* parameters. There's also abstract setColour method which allows to set

* all colours (R,G,B) at once.

*/
class Colour extends Module {
 IntegerDataPoint red;
 IntegerDataPoint green;
 IntegerDataPoint blue;

 public Colour(string moduleName, string moduleDomain, IntegerDataPoint redArgument,
IntegerDataPoint greenArgument, IntegerDataPoint blueArgument){

 super(moduleName, moduleDomain, true);

 red = redArgument;
 green = greenArgument;
 blude = blueArgument;

 red.optional = false;
 red.readable = true;
 red.writeable = true;
 red.documentation = "";

 green.optional = false;
 green.readable = true;
 green.writeable = true;
 green.documentation = "";

 blue.optional = false;
 blue.readable = true;
 blue.writeable = true;
 blue.documentation = "";

}

/**
* This method allows to set all colours (R,G,B) in a single call.

* Since it is an abstract method it has to be implemented by developer according to

* specific technology which the device uses.

*/

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 28 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 public abstract setColour(int R, int G, int B);

}

/**

* Toggle class consists of 3 fields which are relevant to SDT Action parameters and

* toggle() method which determines Toggle Action.

*/

class Toggle {
 boolean optional = true;
 string documentation;
 string name;

public abstract void toggle(){}

public Toggle(boolean optional, string documentation, string name){
 this.optional = optional;
 this.documentation = documentation;
 this.name = name;

}
}

/**

* DataPoint class constis of 6 fields relevant to DataPoint SDT parameters.

* In the constructor there's name and type assingments. The rest of paremeters are

* assingments in classes which inherits from DataPoint class.

*/

class DataPoint{
 string name;
 string type;
 boolean optional;
 bool readable;
 bool writeable;
 string documentation;

 public DataPoint(string nameArgument, string typeArgument){
 name = nameArgument;
 type = typeArgument;
 }
}

/**

* IntegerDataPoint class consists of two abstract methods getValue() and setValue()

* which are implemented in HueLight class in 9.3.4 clause.

* Notice there is DataPoint constructor called in IntegerDataPoint constructor.

*/
public abstract class IntegerDataPoint extends DataPoint{

 public IntegerDataPoint(string name){
 super(name, "Integer");

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 29 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 }

 abstract int getValue(){};

 abstract void setValue(int value){};
}

/**
* BooleanDataPoint class consists of two abstract methods getValue() and setValue()
* which are implemented in HueLight class in 9.3.4 clause.
* Notice there is DataPoint constructor called in BooleanDataPoint constructor.
*/
public abstract class BooleanDataPoint extends DataPoint{

 public BooleanDataPoint(string name){
 super(name, "Boolean");
 }

 abstract boolean getValue();

 abstract void setValue(boolean value);

}

9.3.4 Instance of SDT Device example: Hue Light
This section presents a “pseudo code” implementation of IPE for particular device: Hue Light. Please note that this

pseudo-code is similar to Java but should be considering just an example, it isn’t attend to be compilable.

/**
* HueLight class inherits from DeviceLight class. In the contructor of this class
* DataPoints are created with all needed abstract methods implementation
* specific for technology (Hue Light in this use case) the device uses. It means that
* each DataPoint (e.g. powerState in BinarySwitch) has implementation of each abstract
* method which consists of Hue API calls to control Hue Light.
*/
class HueLight extends DeviceLight{

 public HueLight(string name, string domain){
 super(name, domain);
 }

 BinarySwitch = new BinarySwitch("binarySwitch", domain,
new BooleanDataPoint("powerState"){
 boolean getValue(){
 HttpRequest httpRequest;

httpRequest.setURL("http://<bridge_ip_address>/api/1028d66426293e821ecfd9ef1a
0731df/lights/1/state");

 httpRequest.setMethod("GET");
 bool state = parseOnOff(httpRequest.sendHTTPRequest());
 return state;
 }

 void setValue(boolean value){
 HTTPRequest httpRequest;

httpRequest.setURL("http://<bridge_ip_address>/api/1028d66426293e821ecfd9ef1a
0731df/lights/1/state");

 httpRequest.setBody("{\"on\":" + value + "}");
 httpRequest.setMethod(“PUT”);

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 30 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 httpRequest.sendHTTPRequest();
 }
 });

Colour = new Colour("colour", domain, new IntegerDataPoint("red"){

int getValue(){
HttpRequest httpRequest;
httpRequest.setURL(http://<bridge ip
address>/api/1028d66426293e821ecfd9ef1a0731df/lights/1/state");
httpRequest.setMethod("GET");
int red = parseRed(parseColor(httpRequest.sendHTTPRequest()));
return red;

}
void setValue(int value){

HSVColour hsv = new HSVColour();
 hsv.convertFromRGB(value, 0, 0);

 HTTPRequest httpRequest;
 httpRequest.setURL("http://<bridge ip
address>/api/1028d66426293e821ecfd9ef1a0731df/lights/1/state");
 httpRequest.setBody("{\"on\":true, \"sat\":" + hsv.getSat() + ", \"bri\":" +
hsv.getBri() + ",\"hue\":" + hsv.getHue() +"}"});
 httpRequest.setMethod(“PUT”)
 httpRequest.sendHTTPRequest();

}
}, new IntegerDataPoint("green"){

int getValue(){
HttpRequest httpRequest;
 httpRequest.setURL(http://<bridge ip
address>/api/1028d66426293e821ecfd9ef1a0731df/lights/1/state");
 httpRequest.setMethod("GET");
 int green = parseGreen(parseColor(httpRequest.sendHTTPRequest()));
return green;

}

void setValue(int value){

HSVColour hsv = new HSVColour();
 hsv.convertFromRGB(0, value, 0);

 HTTPRequest httpRequest;
 httpRequest.setURL("http://<bridge ip
address>/api/1028d66426293e821ecfd9ef1a0731df/lights/1/state");
 httpRequest.setBody("{\"on\":true, \"sat\":" + hsv.getSat() + ", \"bri\":" +
hsv.getBri() + ",\"hue\":" + hsv.getHue() +"}"});
 httpRequest.setMethod(“PUT”)
 httpRequest.sendHTTPRequest();

}
}, new IntegerDataPoint("blue"){

int getValue(){
HttpRequest httpRequest;
 httpRequest.setURL(http://<bridge ip
address>/api/1028d66426293e821ecfd9ef1a0731df/lights/1/state");
 httpRequest.setMethod("GET");
 int blue = parseBlue(parseColor(httpRequest.sendHTTPRequest()));
return blue;

}
void setValue(int value){

HSVColour hsv = new HSVColour();
hsv.convertFromRGB(0, 0, value);

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 31 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

HTTPRequest httpRequest;
httpRequest.setURL("http://<bridge ip
address>/api/1028d66426293e821ecfd9ef1a0731df/lights/1/state");
httpRequest.setBody("{\"on\":true, \"sat\":" + hsv.getSat() + ", \"bri\":" +
hsv.getBri() + ",\"hue\":" + hsv.getHue() +"}"});
httpRequest.setMethod(“PUT”)
httpRequest.sendHTTPRequest();

}

}){

void setColour(int R, int G, int B){
 HSVColour hsv = new HSVColour();
 hsv.convertFromRGB(R, G, B);

 HTTPRequest httpRequest;
httpRequest.setURL("http://<bridge ip
address>/api/1028d66426293e821ecfd9ef1a0731df/lights/1/state");
httpRequest.setBody("{\"on\":true, \"sat\":" + hsv.getSat() + ", \"bri\":" +
hsv.getBri() + ",\"hue\":" + hsv.getHue() +"}"});
 httpRequest.setMethod(“PUT”)
 httpRequest.sendHTTPRequest();

}
};

}

/**

* SDT Colour model uses RGB colour values and Hue Light device uses HSV model.

* HSVColour class allows to convert RGB to HSV with its convertFromRGB methods.

* This class and method isn’t a part of SDT data model.

*/

class HSVColour{

int hue;
int sat;
int value;

 void convertFromRGB(int R, int G, int B){
 //Algorithm that converts RGB values to HSV values should be implemented here
 }
}

9.4 Developer of the utility application

9.4.0 Introduction
Clause 9.4 describes registration of AE for utility application, discovery process and controlling and monitoring

devices.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 32 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Mcc
Mca

Cloud/Server

Smartphone

Bridge

Bulb #1 Bulb #2

IN-CSE

ADN-AE-1ADN-AE-1

MN-CSEMN-CSE

NoDN

NoDN NoDN

AE-IPEAE-IPE

Gateway

Hue Rest API

Non-oneM2M
nodes

oneM2M
nodes

Figure 9.4.0-1 Scope of 9.4 Developer of the utility application section

9.4.1 Application Entity registration in IN/MN-CSE
The ADN-AE with IN-CSE registration is shown in the following procedure.

POST /server?rcn=0 HTTP/1.1

Host: incse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml;ty=2

X-M2M-RI: server-1234

<?xml version="1.0" encoding="UTF-8"?>

<m2m:ae xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="smartphone_ae">

<api>incse.lightControlApp</api>

<rr>true</rr>

</m2m:ae>

HTTP Response:

201 Created

X-M2M-RSC: 2001

X-M2M-RI: server-1234

Content-Location: /in-cse/ae-CAE345

In response Content-Location header there's an address of registered Application Entity.

AE registration process is comprehensively described in 10.2.2.1 TS-0001 clause.

9.4.2 Discovery proccess
Clause 9.4.2 describes discovery proccess which uses filter criteria to limit the scope of returned information.

http://www.onem2m.org/xml/protocols

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 33 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Folowing response searches for resources with cnd(Container Definition) set to org.onem2m.home.device.deviceLight

so it gives in response list of urils of light devices. Uril is neccessary to control particular device. Fu (filter usage)

parameter value set to '1' indicates this is normal resource discovery request so only the addresses of the child resources

are returned.

GET /server?fu=1&cnd=org.onem2m.home.device.deviceLight HTTP/1.1
Host: incse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml

X-M2M-RI: server-1234

HTTP Response:

200 OK

X-M2M-RSC: 2000

X-M2M-RI: server-1234

Content-Type: application/xml

<m2m:uril xmlns:m2m="http://www.onem2m.org/xml/protocols">

mn-cse/DL3404345178

</m2m:uril>

Discovery process is comrehensively described in TS-0001 6.2.5 and 10.2.6 clause.

9.4.3 Control & monitor devices

9.4.3.0 Introduction
Clause 9.4.3 describes how to control and monitor SDT devices registered in oneM2M network.

9.4.3.1 Getting URLs for resources
First there is a need to get a url of ModuleClass resource. ModuleClass is a child of deviceLight, so there is a need to

send a request to device address which returns a list of it's children in response. In this particular case there're two:

binarySwitch and toggle. Each of them should be controlled by requests sent on given addresses.

Following request gives a list of deviceLight children (ModuleClassess or Actions) in response with their urils.

GET /~/mn-cse/DL3404345178?rcn=6

HTTP/1.1

Host: incse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml

X-M2M-RI: server-12345

HTTP Response:

200 OK

X-M2M-RSC: 2000

X-M2M-RI: server-12345

Content-Location: /in-cse/ae-CAE345

<?xml version="1.0" encoding="UTF-8"?>

<m2m:fcnt xmlns:m2m="http://www.onem2m.org/xml/protocols">

 <ch rn="binarySwitch" ty="28">/mn-cse/MC43546456 </ch>

<ch rn="toggle" ty="28">/mn-cse/AC-54783722 </ch>

</m2m:fcnt>

Here is data from previous request answer which is needed:

<ch rn="binarySwitch" ty="28">/mn-cse/MC43546456 </ch>

<ch rn="toggle" ty="28">/mn-cse/AC-54783722 </ch>

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 34 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

9.4.3.2 DataPoint value retrieving
To monitor powerState , a RETRIEVE request to binarySwitch resource (/mn-cse/MC43546456)is sent as following.

In response there is xml payload which contains whole binarySwitch representation.

Remark: Retrieving value of a DataPoint is possible only through retrieving all DataPoints which belong to particular

ModuleClass. The set of all ModuleClass's DataPoints is sent in response. .

GET /~/mn-cse/MC43546456?rcn=1 HTTP/1.1

Host: incse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml

X-M2M-RI: server-12346

HTTP Response:

200 OK

X-M2M-RSC: 2000

X-M2M-RI: server-12346

<?xml version="1.0" encoding="UTF-8"?>

<hd:binSh xmlns:m2m="http://www.onem2m.org/xml/protocols">

<powSe type="xs:boolean">true</powSe>

</hd:binSh>

9.4.3.3 DataPoint value changing
To change powerState value, a request to binarySwitch resource (/mn-cse/MC43546456)is sent with xml (or json)

representation of new powerState value. PUT request is used because whole resource is updated.

Following requests changes power State Data Point to 'true'.

PUT /~/mn-cse/MC43546456 HTTP/1.1

Host: incse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml

X-M2M-RI: server-12346

<?xml version="1.0" encoding="UTF-8"?>

<hd:binSh xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="smartphone_ae">

<powSe type="xs:boolean">true</powSe>

</hd:binSh>

HTTP Response:

204 Updated

X-M2M-RSC: 2004

X-M2M-RI: server-12346

9.4.3.4 Action triggering
To trigger Toggle action a null content parameter is sent to toggle resource address. (see TS-0023, 6.2.4 Clause, Rule

3-4).

Following request sends null content and triggers Toggle action.

PUT /~/mn-cse/AC-54783722 HTTP/1.1

Host: incse.provider.com:8080

http://www.onem2m.org/xml/protocols
http://www.onem2m.org/xml/protocols

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 35 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

X-M2M-Origin: Soriginator

Content-Type: application/xml

X-M2M-RI: server-12346

<?xml version="1.0" encoding="UTF-8"?>

<hd:toggle xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="smartphone_ae">

</hd:toggle>

HTTP Response:

204 Updated

X-M2M-RSC: 2004

X-M2M-RI: server-12346

9.4.3.5 Subscription mechanism
Following request creates subscription on binarySwitch resource (mn-cse/MC43546456) which allows to send

notifications after its state change. There are two mandatory parameters.

NotificationURI parameter is represented by <nu> xml tag and indicates the address of the device which is supposed to

be notificated about ouccured changes. In our case smartphone IP address is used.

Remark: In our use case smartphone IP address is used as a receiver of notifications but in other usage there can be used

notification server with static IP address assigned. In such use case this server would be responsible to send notification

directly on smartphone address.

NotificationContentType is represented by <nct> xml tag and indicates the type of notification. Its value isone of the

following:

 - 1: all atributes

 - 2: modified attributes,

 - 3: resourceID

In our example <nct> is set to 2.

In response there is a whole set of subscription resource parameters.

POST /~/mn-cse/MC43546456 HTTP/1.1

Host: incse.provider.com:8080

X-M2M-Origin: Soriginator

Content-Type: application/xml

X-M2M-RI: server-12346

<m2m:sub xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="sub_45346345">

<nu>192.168.10.1</nu>

<nct>2</nct>

</m2m:sub>

HTTP Response

HTTP/1.1 200 OK

X-M2M-RSC: 2000

X-M2M-RI: server-12345

<rn>sub_45346345</rn>

<ty>23</ty>

<ri>/~/mn-cse/MC43546456/sub-45346345</ri>

<pi>/~/mn-cse/MC43546456/fcnt-45352623</pi>

<ct>20170802T143815</ct>

<lt>20170802T143815</lt>

<nu>192.168.10.1</nu>

<nct>2</nct>

After subscription creation, server starts to send verification requests to listener periodically. Verification request has

<vrq> attribute set to true. Listener answers with HTTP 200 status to confirm that it is still available. Verification

http://www.onem2m.org/xml/protocols

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 36 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

request and listener's response is as follows:

POST 192.168.10.1 / HTTP/1.1
Host: 192.168.10.1
X-M2M-Origin: Soriginator
X-M2M-RI: notif-12345
Content-Type: application/vnd.onem2m-ntfy+xml

<?xml version="1.0" encoding="UTF-8"?>
<m2m:sgn xmlns:m2m="http://www.onem2m.org/xml/protocols">
 <vrq>true</vrq>
 <sud>false</sud>
</m2m:sgn>

HTTP Response

HTTP/1.1 200 OK

X-M2M-RSC: 2000

X-M2M-RI: notif-12345

Here is the example of notification which is supposed to be sent after powerState value change. Notification is sent to

address which was set in subsription creation request and contains representation of changed DataPoints of

binarySwitch resource.

POST 192.168.10.1 / HTTP/1.1

 Host: 192.168.10.1

 X-M2M-Origin: Soriginator

 X-M2M-RI: notif-12345

 Content-Type: application/vnd.onem2m-ntfy+xml

 <?xml version="1.0" encoding="UTF-8"?>

 <m2m:sgn xmlns:m2m="http://www.onem2m.org/xml/protocols">

 <nev>

 <rep>

 <powSe type="xs:boolean">true</powSe>

 </rep>

<rss>1</rss>

 </nev>

 <sur> mn-cse/MC43546456/sub-45346345</sur>

 </m2m:sgn>

HTTP Response

HTTP/1.1 200 OK

X-M2M-RSC: 2000

X-M2M-RI: notif-12345

Following request deletes subscription on binarySwitch.

DELETE /~/mn-cse/MC43546456/sub-45346345 HTTP/1.1

Host: incse.provider.com:8080

X-M2M-Origin: Soriginator

Accept: application/xml

HTTP Response

HTTP/1.1 204 No Content

10 Conclusion
A remote light control and monitor use case is proposed to describe IPE and SDT aspects of oneM2M standard. The

developer guide described these ascpects from two different perspectives: developer of a device adapter (AE: Inter-

http://www.onem2m.org/xml/protocols

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 37 of 37
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

working Proxy) and developer of an utility application. The current use case is done by following the high level

procedures such as registration of AE with CSE, <flexContainer> resources creation, <flexContainer> retrieveal,

<flexContainer> update, subscription and notifications.

History

Publication history

V2.0.0 12-Mar-2018 Release 2A - Publication

	TR-M2M-0039-Developer_guide-SDT-based_implementation-v_2_0_0.pdf
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Abbreviations
	4 Conventions
	5 Use Case
	5.0 Introduction
	5.1 Abstraction description via the lightbulbs example

	6 Introduction to IPE and SDT
	6.1 Introduction to IPE
	6.2 Introduction to SDT
	6.2.1 SDT data model description
	6.2.2 SDT Device example: deviceLight

	6.3 IPE and SDT in oneM2M tree

	7 Functional architecture
	8 Procedures and call flows
	8.1 Introduction
	8.2 Call Flows from perspective of device adapter developer
	8.2.1 IPE-AE registration with MN-CSE
	8.2.2 SDT Device resource tree creation in MN-CSE

	8.3 Call flows from perspective of utility application developer
	8.3.1 Application Entity registration in IN/MN-CSE
	8.3.2 Discovery Requests
	8.3.3 Control & monitor devices
	8.3.3.1 Getting URLs for resources
	8.3.3.2 DataPoint value retrieving
	8.3.3.3 DataPoint value changing
	8.3.3.4 Action triggering
	8.3.3.5 Subscription mechanism

	9 Implementation
	9.1 Introduction
	9.2 Assumptions
	9.2.0 Introduction
	9.2.1 Addressing for Entities

	9.3 Developer of the device adapter (IPE-AE)
	9.3.0 Introduction
	9.3.1 IPE-AE registration with MN-CSE
	9.3.2 SDT Device resource tree creation in MN-CSE (Resources registration)
	9.3.3 Implementation of abstract SDT Device example: deviceLight
	9.3.4 Instance of SDT Device example: Hue Light

	9.4 Developer of the utility application
	9.4.0 Introduction
	9.4.1 Application Entity registration in IN/MN-CSE
	9.4.2 Discovery proccess
	9.4.3 Control & monitor devices
	9.4.3.0 Introduction
	9.4.3.1 Getting URLs for resources
	9.4.3.2 DataPoint value retrieving
	9.4.3.3 DataPoint value changing
	9.4.3.4 Action triggering
	9.4.3.5 Subscription mechanism

	10 Conclusion
	History

