TTC IR#E

TTC STANDARD

JF-IR004.10
Jdddduboboboon
Jddddoooooodd

I 'Tiny TP": A flow-Control Mechanism for use with IrLMP[]

[20

19970 110 260 O O

googg

THE TELECOMMUNICATION TECHNOLOGY COMMITTEE

Telecommunication
Technology
Committee

IrDA(Infrared Data Association)

“Tiny TP' A Flow-Control Mechanism for use with IrLMP Ver 1.1

€Y)

Figure 2.1

o

IFigure 2.2

IFigure 2.3

IFigure 2.4

IFigure 4.1

Table 2-1

IrDA Tiny TP (1.0-1.1)

1rDA

IrLAP(Serial Infrared Link Access Protocol)
IrLMP(Serial Infrared Link Management Protocol)
Tiny TP (A Flow-Control Mechanism for use with IrLMP)

IrCOMM (Serial and Parallel Port Emulation over IR(Wire Replacement))

L5 0 1= o
TTP _DISCONNECT - et e e et e e e e et e aeccaceecaeaaaaanaaaaaanan
L3 > U W
L2 -
L 22 0o ¥ 1
T P-PDUS - . o e e e e et e e et et a e ea e

L5 D

Tiny Transport Protocol Version 1.1

Infrared Data Association

‘Tiny TP’: A Flow-Control Mechanism
for use with IrLMP

Document Status: Version 1.0

l.1ato 1.1

1.0.to 1.1a

On 17" October 1996 the IrDA Board voted to accept the Technical
Committee’s recommendation that Draft Version 1.1a of the Tiny TP
specification be adopted as Version 1.1 of that specification.

The use of an explicit zero-valued MaxSduSize parameter during TTP
connection establishment has been deleted to enable LITE implementations of
Tiny TP that do not implement SAR to merely test for the presence or absence
of the MaxSdusSize parameter rather the having to inspect its value for zero as
well.

As a consequence the overloading of the MaxSduSize parameter to tag byte-
stream or sequenced packet semantics during connection establishment,
suggested in Appendix A Section 4.3 has been removed.

Clarification has been added to section 2.3.2.1 that clearly states that the
MaxSduSize parameter is strictly applied to the size of SDUs exchanged
between peer TTP clients.

Tiny Transport Protocol Version 1.1

INFRARED DATA ASSOCIATION (IrDA) - NOTICE TO THE TRADE -
SUMMARY:

Following is the notice of conditions and understandings upon which this document is made available to members and non-
members of the Infrared Data Association.

Availability of Publications, Updates and Notices

Full Copyright Claims Must be Honored

Controlled Distribution Privileges for IrDA Members Only
Trademarks of IrDA - Prohibitions and Authorized Use
No Representation of Third Party Rights

Limitation of Liability

Disclaimer of Warranty

Product Testing for IrDA Specification Conformance

IrDA PUBLICATIONS and UPDATES:

IrDA publications, including notifications, updates, and revisions, are accessed electronically by IrDA members in good standing
during the course of each year as a benefit of annual IrDA membership. Electronic copies are available to the public on the IrDA
web site located at irda.org. Requests for publications, membership applications or more information should be addressed to:
Infrared Data Association, P.O. Box 3883, Walnut Creek, California, U.S.A. 94598; or e-mail address: info@irda.org or by calling
John LaRoche at (510) 943-6546 or faxing requests to (510) 934-5600.

COPYRIGHT:

1. Prohibitions: IrDA claims copyright in all IrDA publications. Any unauthorized reproduction, distribution, display or
maodification, in whole or in part, is strictly prohibited.

2. Authorized Use: Any authorized use of IrDA publications (in whole or in part) is under NONEXCLUSIVE USE LICENSE
ONLY. No rights to sublicense, assign or transfer the license are granted and any attempt to do so is void.

TRADEMARKS:

1. Prohibitions: IrDA claims exclusive rights in its trade names, trademarks, service marks, collective membership marks and
certification marks (hereinafter collectively "trademarks"), including but not limited to the following trademarks: INFRARED DATA
ASSOCIATION (wordmark alone and with IR logo), IrDA (acronym mark alone and with IR logo), IR logo, IR DATA CERTIFIED
(composite mark), and MEMBER IrDA (wordmark alone and with IR logo). Any unauthorized use of IrDA trademarks is strictly
prohibited.

2. Authorized Use: Any authorized use of a IrDA collective membership mark or certification mark is by NONEXCLUSIVE USE
LICENSE ONLY. No rights to sublicense, assign or transfer the license are granted and any attempt to do so is void.

NO REPRESENTATION of THIRD PARTY RIGHTS:

IrDA makes no representation or warranty whatsoever with regard to IrDA member or third party ownership, licensing or
infringement/non-infringement of intellectual property rights. Each recipient of IrDA publications, whether or not an IrDA member,
should seek the independent advice of legal counsel with regard to any possible violation of third party rights arising out of the
use, attempted use, reproduction, distribution or public display of IrDA publications.

IrDA assumes no obligation or responsibility whatsoever to advise its members or non-members who receive or are about to
receive IrDA publications of the chance of infringement or violation of any right of an IrDA member or third party arising out of the
use, attempted use, reproduction, distribution or display of IrDA publications.

LIMITATION of LIABILITY:

BY ANY ACTUAL OR ATTEMPTED USE, REPRODUCTION, DISTRIBUTION OR PUBLIC DISPLAY OF ANY IrDA
PUBLICATION, ANY PARTICIPANT IN SUCH REAL OR ATTEMPTED ACTS, WHETHER OR NOT A MEMBER OF IrDA,
AGREES TO ASSUME ANY AND ALL RISK ASSOCIATED WITH SUCH ACTS, INCLUDING BUT NOT LIMITED TO LOST
PROFITS, LOST SAVINGS, OR OTHER CONSEQUENTIAL, SPECIAL, INCIDENTAL OR PUNITIVE DAMAGES. IrDA
SHALL HAVE NO LIABILITY WHATSOEVER FOR SUCH ACTS NOR FOR THE CONTENT, ACCURACY OR LEVEL OF
ISSUE OF AN IrDA PUBLICATION.

DISCLAIMER of WARRANTY:

All IrDA publications are provided "AS IS" and without warranty of any kind. IrDA (and each of its members, wholly and
collectively, hereinafter "IrDA") EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND
WARRANTY OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IrDA DOES NOT WARRANT THAT ITS
PUBLICATIONS WILL MEET YOUR REQUIREMENTS OR THAT ANY USE OF A PUBLICATION WILL BE UN-
INTERRUPTED OR ERROR FREE, OR THAT DEFECTS WILL BE CORRECTED. FURTHERMORE, IrDA DOES NOT
WARRANT OR MAKE ANY REPRESENTATIONS REGARDING USE OR THE RESULTS OR THE USE OF IrDA
PUBLICATIONS IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR
WRITTEN PUBLICATION OR ADVICE OF A REPRESENTATIVE (OR MEMBER) OF IrDA SHALL CREATE A WARRANTY
OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY.

LIMITED MEDIA WARRANTY:

IrDA warrants ONLY the media upon which any publication is recorded to be free from defects in materials and workmanship
under normal use for a period of ninety (90) days from the date of distribution as evidenced by the distribution records of IrDA.
IrDA's entire liability and recipient's exclusive remedy will be replacement of the media not meeting this limited warranty and which
is returned to IrDA. IrDA shall have no responsibility to replace media damaged by accident, abuse or misapplication. ANY
IMPLIED WARRANTIES ON THE MEDIA, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF
DELIVERY. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM PLACE TO PLACE.

COMPLIANCE and GENERAL:

Membership in IrDA or use of IrDA publications does NOT constitute IrDA compliance. It is the sole responsibility of each
manufacturer, whether or not an IrDA member, to obtain product compliance in accordance with IrDA Specifications.

All rights, prohibitions of right, agreements and terms and conditions regarding use of IrDA publications and IrDA rules for
compliance of products are governed by the laws and regulations of the United States. However, each manufacturer is solely
responsible for compliance with the import/export laws of the countries in which they conduct business. The information contained
in this document is provided as is and is subject to change without notice.

Tiny Transport Protocol Version 1.1

Contents
L. INTRODUGCTION L.uuttttttuttuttttttttttttasesseesaeseeeeseeseeeeseseee s e e e e e e e e e e e s e e s e s s b e e b b s s s e s e e b s s e s e e e b beeeebebbeeenees 6
O L =T =T o = PPN 6
2. ELEMENTS OF PROCEDURE ... oot 7
2.1 Tiny TP Service ACCeSS POINt AQAIESSES.ccooi i 7
2.2 TINY TP SErVICE PriMItIVES ... 7
A S I I O] o 1= o TSP PPPPPPTR 7
2.2.2 TTP_DISCOMNECTciiiiiiiiiiiiiiiiiiite et 8
P T B I = - | - W PR 9
224 TTP_UDALA ...cceviiiiiiiiiiiiiiiieeeee e 9
2.2.5 TTP_LOCAIFIOW.coiiiiiiiiiiiiiiiiii 10
2.3 TiNY TP ProtoCol Data UNILSccooi i 10
2.3.1 DAta TTP-PDUS.....ciiiiiiiiiiiiiiiie e 10
2.3.2 CONNECE TTP-PDUS ...ttt e ettt e e e e e e e e e e aeenns 11
2.4 Detailed OPEIatioNccooi oo 13
241 VAHADIES ..o 15
2.4.2 Credit OPEIALION . ..cciiiiiiiiiiiiiet e 15
2.4.3 Segmentation and REASSEMDIYcooiiiiiiiiii 15
2.4.4 EVeNU/ACHON TabIE ..ocoiiiiiiiiiiiii 17
3. IRLMP IAS OBJECT AND ATTRIBUTES oo 21
3.1 EXPOrted ALIIIDULES ... 21
4. APPENDIX A IMPLEMENTATION CONSIDERATIONS. ..ottt 22
A1 TIiNY TP BUFFEIING. ..o 22
o R =T o A = T 1 o o T | PPN 22
4.1.2 SAR ReASSEMDBIY BUFEIuuiiiiiiiiiiiiiiiiiiiiiiiibiiiii bbb eeeeeeeene 22
4.1.3 Combined Buffer Pool and SAR Reassembly BUFfer................uuvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn, 23
4.2 Closing TTP CONNECLIONScooiiiiiiiiiiiie 23
4.3 Byte Stream v Sequenced Packet SErviCe.........ccccooiiii 23

1. Introduction

Whilst IrLAP provides a flow-control mechanism between peer Ir'LAP [1] entities, the introduction of
multiplexed channels above IrLAP by IrLMP LM-MUX [2] introduces a problem. Reliance on IrLAP
to provide flow-control for a multiplexed channel can result in dead-locks if the consumption of data
from one multiplexed channel is dependent on data flowing in an adjacent multiplexed channel.
Conversely, if inbound data on a multiplexed channel cannot be consumed and the underlying
IrLAP connection cannot be flow-controlled off due to the possibility of deadlock, inbound data
(freshly arrived or buffered) must be discarded in the event of buffer exhaustion. Sadly this
reduces the reliable delivery service provided by IrLAP to a best effort delivery service provided by
IrLMP LM-MUX (when multiple multiplexed channels are in operation).

There are at least two possible solutions for restoring a reliable delivery service above IrLMP
LM-MUX.

1. Provide a per application stream flow-control mechanism above LM-MUX between peer
application entities. This ensures that there is always sufficient buffer space available to
accomodate in-bound application data. OR

2. Provide a per application stream retransmission mechanism above LM-MUX that recovers from
the loss of data that arises if inbound buffering become exhausted.

The Tiny TP protocol detailed in this document provides just:
independently flow controlled transport connections
segmentation and reassembly

1.1 References

[1] “Serial Infrared Link Access Protocol”, Ir(LAP, Version 1.0, Infrared Data Association,
June 1994

[2] “Link Management Protocol”, I'LMP, Version 1.0, Infrared Data Association, August 1994

Tiny Transport Protocol Version 1.1

2. Elements of Procedure

2.1 Tiny TP Service Access Point Addresses.

Since each Tiny TP Service Access Point (TTPSAP) is accessible through one and only one IrLMP
LM-MUX LSAP the syntax of a TTPSAP address is identical to that of an IrLMP LSAP address.
Namely:

<TTSAP Address> = <LSAP Address> = <DeviceAddress><LSAP-SEL>
Thus a TTSAP is identified by the address of the LSAP through which it is accessed.

Similarly, a TTP connection (or TTP connection endpoint) is identified by the pair of TTPSAP
addresses at each end of the connection.

2.2 Tiny TP Service Primitives

2.2.1 TTP_Connect

TTP_Connect . r equest (Cal | ed TTPSAP,
Request ed QoS,
Cal i ng MaxSduSi ze
Calling UserData)

TTP_Connect . i ndi cati on(Calling TTPSAP,
Resul tant QoS,
Cal i ng MaxSduSi ze
Calling UserData)

TTP_Connect . response(Cal ling TTPSAP,
Cal ed MaxSdusSi ze,
Call ed UserData)

TTP_Connect . confirn{ Cal | ed TTPSAP,
Resul tant QoS,
Cal l ed MaxSduSi ze
Cal l ed User Dat a)

TTPSAP A reference to a TTPSAP which is also an implicit reference
to the corresponding IrLMP LM-MUX LSAP.

QoS IrLMP/IrLAP Quality of Service parameters.

MaxSduSize The maximum size of the User Dat a field, in bytes, that may

delivered in a TTP_Dat a. i ndi cat i on primitive at the
Calling and Called ends of the TTP connection respectively.
The Calling and Called values for MaxSduSi ze are specified
independently and may differ.

A value of zero disables segmentation and reassembly (SAR).
The UserData field submitted in TTP_Dat a. r equest must
then fit within a single Data TTP-PDU whose maximum size is
determined by IrLAP negotiation.

UserData Calling User Dat a is passed from the entity initiating a TTP
connection to the entity that should respond to an incomming
TTP connection request. Likewise, Called User Dat a is
passed back from the responding entity to the initiating entity.

The total size of the Connect TTP-PDUs transferred during
connection establishment is limited by the size negotiated for
the underlying IrLAP connection. Currently the maximum size
of the Par anet er s field of the Connect TTP-PDU is 6 bytes,
therefore a connect User Dat a field of 52 bytes' or less can
always be transferred during connection establishment.

Typically this might be used as a signature field to help decide
whether to accept the connection; parameter negotiation
between TTP clients; or simply to piggyback a small amount
of data.

This service is used to establish a TTP-connection between two Ir(LMP LSAPs. They are similar to
the corresponding IrLMP LM-MUX LM-Connect primitives.

2.2.2 TTP_Disconnect
TTP_Di sconnect . request (User Dat a)
TTP_Di sconnect . i ndi cati on(Reason, User Dat a)

Reason Disconnect Reason: passed through from IrLMP. Values other
than User Request ed indicate that the connection was
terminated by the TTP service provider rather than by the
peer TTP client entity.

UserData Present only if the reason field specifies User Request ed
Up to 60 bytes of data accompanying the disconnect.

Typically this might be used to carry application specific
diagnostic/reason information concerning the disconnect.

This service is used to: reject incoming TTP connections; terminate a TTP connection; and to
indicate both the normal and abnormal termination of a TTP connection.

The TTP_Di sconnect service primitives are mapped to the corresponding IrLMP[8]
LM Di sconnect service primitives. However, a TTP_Di sconnect . i ndi cati on, generated in
response to the invocation (by IrLMP) of an LM Di sconnect . i ndi cati on, is schedule to occur
after all preceding data received on the TTP connection has been passed to the local TTP client
(with the exception of any partially reassembled TTP SDUs). Likewise, a
LM Di sconnect . request, generated in response to the invocation of
TTP_Di sconnect . request by the local TTP client, is schedule after all preceding data for the
TTP connection received from the local TTP client has been transferred to Ir(LMP.

! The minimum IrLAP maximum data size is 64 bytes. The Connect LM-PDU has a 4 byte header.
If a maximum length MaxSduSize parameter is present then the Connect TTP-PDU currently has a
maximum header length of 8 bytes. 64-4-8=52

Tiny Transport Protocol Version 1.1

2.2.3 TTP_Data
TTP_Dat a. r equest (User Dat a)
TTP_Dat a. i ndi cati on(User Dat a, St at us)

UserData This is the TTP Client Service Data Unit (SDU) that is
exchanged between TTP Clients.

If SAR is active then the size of the User Dat a field submitted
in the . r equest primitive must not exceed the MaxSduSi ze
indicated in the TTP_Connect.indication or
TTP_Connect.confirm primitive that established the
connection.

Likewise the size of User Dat a field delivered using

the . i ndi cat i on primitive may not exceed the
MaxSduSi ze indicated in the TTP_Connect . r equest or
TTP_Connect . r esponse primitive that established the
connection.

If SAR is inactive, then the size of the User Dat a field is
constrained to fit within a single Data TTP-PDU.

Status Delivery St at us may take the following values:

X If the reassembly process is inactive or
has successfully reassembled the inbound
SDU.

Truncat ed: If the reassembly process has truncated
the inbound SDU because its exceeds the
agreed size.

TTP SDUs submitted by the invocation of TTP_Dat a. r equest are delivered to the corresponding
peer by the invocation of TTP_Dat a. i ndi cati on. The TTP_Local Fl ow service is used to
suspend and resume the generation of TTP_Dat a. i ndi cat i on service primitives.

2.2.4 TTP_UData
TTP_UDat a. r equest (User Dat a)
TTP_UDat a. i ndi cati on(User Dat a)

Send data unreliably and without flow control. There is no guarantee that data sent in this manner
will be delivered. These service primitives are mapped directly to the corresponding LM-UData
service primitives for the underlying LSAP-connection. The size of the UserData field is
constrained to fit a single Dat a LM PDU used to convey the User Dat a (SDU).

2.2.5 TTP_LocalFlow
TTP_Local Fl ow. r equest (Fl ow=on| of f)

Flow FI ow=on enables the flow of received TTP SDUs to pass
from the receiving TTP entity to the local TTP client via the
local invocation of TTP_Dat a. i ndi cat i on primitives.

Fl ow=of f halts the flow of TTP SDUs to the local TTP client.
Inbound data is held backlogged within the receiving TTP
entity which may apply backpressure to halt the data flow at
the sending peer TTP entity.

This service is used to control the flow of received TTP SDUs between the receiving TTP entity
and its local client.

2.3 Tiny TP Protocol Data Units

2.3.1 Data TTP-PDUs

Data TTP-PDUs are carried in the User Dat a field of I'[LMP LM-MUX Data LM-PDUs. Hence, Data
TTP-PDUs are passed as the User Dat a parameter in IrLMP LM_Data service primitives

These are the only IrLMP service primitives used to carry Data TTP-PDUs.

1 byte | 0-(IrLAPmax-3) bytes
I 0 g
M DeltaCredit UserData
Bit: 7 6-0

Figure 2.1 Data TTP-PDU
M The More bit.

Only significant if SAR has been specified by the use of non-
zero MaxSduSi ze during connection establishment.

When set indicates that the User Dat a field does not contain
the last segment of a segmented TTP-SDU.

When clear indicates that the User Dat a field contains the final
segment of a segmented TTP-SDU.

For Dataless Data TTP-PDUs (see below) the Mbit MUST be
sent as 0 and is ignored on reception.

DeltaCredit Specifies the number (0-127) of additional Data-Carrying Data
TTP-PDUs that may be sent in the reverse direction.

A Data-Carrying Data TTP-PDU carries 1 or more octets of
User Dat a.

A Dataless Data TTP-PDU has a zero length User Dat a field.

It is always permissible to send a dataless Data TTP-PDU in
order to advance credit to the peer TTP Entity.

10

Tiny Transport Protocol Version 1.1

UserData If SAR is in operation then this field carries a segment of a
segmented TTP-SDU.

It is recommended that all segments of a segmented TTP-SDU
except the last should fill outbound Data TTP-PDUS.

When SAR is not in operation TTP requires that TTP-SDUs fit
within a single Data TTP-PDU.

2.3.2 Connect TTP-PDUs

Connect TTP-PDUs are exchanged during connection establishment and are carried in the
User Dat a field of Connect LM-PDUs and Connect Confirm LM-PDUs. Hence Connect TTP-PDUs
are passed as User Dat a in the IrLMP LM_Connect service primitives.

There are two forms of Connect TTP-PDU, once that carries a Par anet er s field and one that
does not.

1 byte | 0 to 59 bytes
le Jle N
e e d
P=0 InitialCredit UserData
Bit: 7 6-0

Figure 2.2 Parameterless Connect TTP-PDU

1 byte 0 to (59-(x+1)) bytes
le P N
¢ b« g/
P=1 InitialCredit Parameters UserData
Bit. 7 6-0
1 byte x bytes
Plen=x Pvalue
Length in Bytes: 1 1 PL
PI|PL| PV PI|PL| PV
1st Parameter 2nd Parameter |
(if present)
Figure 2.3 Parameter Carrying Connect TTP-PDU

% The maximum size of an outbound PDU may be constrained smaller than that imposed by IrLAP
negotiation due to local buffer management considerations

11

InitialCredit

Parameters

UserData

When set specifies that a variable length Par anet er s field
follows the I ni ti al Credit field (Figure 2.3).

When clear specifies that the Par anet er s field is absent
(Figure 2.2) and that parameters should assume their default
values.

Specifies the initial number (0-127) of Data-Carrying Data
TTP-PDUs that may be sent in the reverse direction. .

A variable length field composed of two subfield, a single byte
Pl en that indicates the size in bytes (0-255) of the second sub-
field Pval ue. Pval ue contains a list of tuples of the form PI ,
PL and PV. PI and PL are each a single byte in size and
identify the parameter being carried and specify the length of
the value carried in its PV field respectively. The PV field
carries the parameter value and its interpretation depends on
the value of Pl . This tuple mechanism is identical to that used
for IrLAP parameter negotiation and for the IrCOMM control
channel.

If there are N parameters then the value of Pl en is:

N
Plen = &(2+PLy)
x=1
The remainder of the Connect LM-PDU used to carry the
Connect TTP-PDU carries User Dat a that is exchanged
between TTP clients during connection establishment.

Implicitly this field carries a single unsegmented TTP-SDU, ie.
it DOES NOT carry the first segment of an SDU that is
continued in subsequent Data TTP-PDUs.

Currently the maximum size of the Par anet er s field is 7
bytes therefore a User Dat a field of up to 52 bytes may always
be transferred. Future revisions of this standard may reduce
this value.

2.3.2.1 Connect TTP-PDU Parameters

Tiny TP curently defines only one parameter that may be carried in the Par anet er s field of a

Connect TTP-PDU

Parameter Name: MaxSduSize

Pl Value: 0x01

PL Range: 0x00-0x04

Value Semantics: The maximum size of the User Dat a field, in bytes, that may delivered in a
TTP_Dat a. i ndi cati on primitive at the end of the connection sending the

parameter.

Non-zeroed values of MaxSduSi ze indicate the maximum TTP-SDU sizes that
receiving TTP clients are prepared to accept. The value of this parameter
should be strictly applied even if it is smaller than that indicated by the

appropriate IrLAP maximum data size.

12

Tiny Transport Protocol Version 1.1

The PV field is interpreted as an unsigned integer that is transferred most
significant byte first (big endian). Values lie in the range 1 through (2732)-1.
Leading zero bytes may be truncated.

The default value for this parameter is 0 and arises only when either the
Par anet er s field is absent or the MaxSduSi ze parameter is absent from the
Par anet er s field.

MaxSduSize should never be sent with an explicit value of zero®. Zero is
the default value which arises when the parameter is absent Connect
TTP-PDUs.

The value of zero for MaxSduSi ze disables the operation of Segmentation and
Reassembly. All outbound Data TTP-PDUs should be sent with the M bit
cleared. The M bit is ignored on all inbound Data TTP-PDUs. The size of
TTP-SDU passed as the User Dat a parameter in TTP_Data service primitives
will be constrained to fit within a single Data LM-PDU.

1to (232- 2) Values between 1 and (232- 2) inclusive specify the maximum size in bytes of

=

TTP-SDU that may be delivered to the end of the connection sending the
Connect TTP-PDU that carries the MaxSduSi ze parameter.

Specifies an unbounded MaxSduSi ze. In general, this indicates that TTP entity

sending this parameter AND the corresponding TTP client are capable of
receiving arbitrarily large SDUs. This is like to require that the implementation
of the TTP entity supports the delivery of partially reassembled TTP-SDUs and
that the TTP client is capable of processing partially delivered TTP-SDUs so
that buffers may be recycled.

2.4 Detailed Operation

The operation of the TTP involves the exchange of Data TTP-PDUs described in Section 2.3.1.
Effectively this adds a single octet of header to the Ir(LMP LM-MUX Data LM-PDUs. This additional
octet is used to convey increments (credits) to the number of Data TTP-PDUs that may be
exchanged in each direction using the underlying LM_Data service.

® This is to ensure that LITE implementations of TTP that do not support SAR NEVER have to
inspect the value of the MaxSduSize parameter, they merely have to test for its presence.

13

d it

TTP_Data.request(data)
[

.. TTP_Data.indication(data,status))
Segmentation
[§)

‘ TTP_Segment[M=m,UserData=data]
Rx Buffer RxSDU.data

Poel

TTP_LocalFlow.request(flow)
RxSDU busy = (flow==off)

TxQueue

a

SendCredit += deltacredit
SendCredit>0 «g-s-e.., l
RN

e
IS
.- \
-
.

RemoteCredit|A v

RemoteCredit - = 1;
TTP_Segment[M=m,UserData=data]

SendCredit -= 1
LM_Data.request(V4
TTP_PDU(deltaCredit,data))

LM_Data.indication(
TTP_PDU(deltacredit, M=m,UserData=data))

LM_MUX Connection
Endpoint

Figure 2.4 Tiny TP SAR and Credit Flow

Figure 2.4 shows the manipulation of both inbound and oubound credit at one end of a TTP
connection that has reached its data phase.

For the purposes of describing the operation of Tiny TP, Figure 2.4 and Table 2-1 (below) describe
a buffer management scheme that assumes a fixed number of receive buffers is available to the
connection and that available credit is advanced the peer TTP entity in an aggressive way.
However, other buffer management policies are legal.

Possible variations include:

dynamic variation of the number of receive buffers in use by a TTP connection.
NB. Once credit has been advance to a peer (ie. transfered from Avai | Credi t to
Renot eCr edi t) it cannot be reclaimed.

a lazy policy for advancing credit. In the context of the description given, this means that credit
is held longer at on Avai | Cr edi t rather than being advanced at the eariliest opportunity. This
leaves buffers available to be reclaimed (from Avai | Cr edi t) and redeployed to other needy
TTP connections or to relieve resource problems elsewhere in a system.

Note that Connect TTP-PDUs exchanged during connection establishment are not regarded as
requiring or consuming credit. During connection establishment the use of segmentation and
reassembly is indicated as are any constraints on the maximum Service Data Unit (SDU) that can
be conveyed using the TTP_Data service.

The TTP entity manipulates variables associated with each TTP-Connection that implicitly encode
the state of the flow control mechanism for that connection. The mechanism is described in the

Event/Action pairs of Table 2-1 (below).

14

Tiny Transport Protocol

Version 1.1

2.4.1 Variables

AvailCredit Credit available to advance to the peer TTP entity.

RemoteCredit Credit held by peer TTP Entity:

SendCredit Credit held by local TTP Entity

Connected A flag that monitors the state of the underlying LM-MUX connection.

TxQueue FIFO queue used to hold TTP_Segments and TTP_Disconnect requests. Holds
segmented SDUs and prevents a disconnect overtaking queued data.

RxQueue FIFO queue used to hold inbound TTP_Segments and TTP_Disconnect
requests. TTP_Segments are transferred from RxQueue to the reassembly
buffer, RxSdu.data. Credit is recycled as this transfer takes place.

MaxSegSize The maximum size of segment conveyed in an outbound Data TTP-PDU.

TxMaxSduSize

RxMaxSduSize

Received from peer TTP entity during connection establishment. Used to guard
the size of TTP-SDUs submitted using the TTP_Data.request service primitive.

Transmitted to peer TTP entity during connection establishment. Used to police
the size of inbound TTP-SDUSs.

RxSdu.size The current size of a partially received SDU undergoing reassembly.
RxSdu.data The current partially received SDU undergoing reassembly.
RxSdu.busy A flag that controls the consumption of the receive queue. Set/cleared by

invocation of TTP_LocalFlow.request.

2.4.2 Credit Operation

If SendCredit is non-zero then the local entity may reliably send data. While SendCredit is zero
TTP_Data.request primitives are left queued in sequence on TxQueue awaiting credit from the
peer entity.

If RemoteCredit is non-zero then the peer entity is able to reliably send data.

If AvailCredit is non-zero then the local entity has credit available that it has not yet advanced to
its peer. Credit is advanced in blocks of up to 127 with the normal flow of data.

If RemoteCredit falls below some configured LowThreshold and AvailCredit is or becomes non-
zero whilst TxQueue is empty or SendCredit is zero, then RemoteCredit is advanced by the
transmission of a dataless FlowData TTP-PDU.

2.4.3 Segmentation and Reassembly

When Segmentation and Reassembly (SAR) is disabled in a given direction then all SDUs
exchanged must fit within a single Data TTP-PDU. In this case the M bit is ignored on reception.

When SAR is enabled and a received SDU exceeds the maximum SDU size indicated during
connection establishment the resulting SDU is truncated and the truncated portion delivered
(logically) when the final segment arrives with a status code that indicates that an error has
occurred.

In the formal description that follows it should be noted that it is assumed that data is delivered to
the TTP client only on reception of the last segment of an SDU subjected to SAR.

15

This may not be the case in some practical interfaces which allow the delivery of partially
reassembled SDUs in the interests of economising on buffer space. This latter style of interface is

capable of supporting unbounded SDU sizes. See Section 4.1 for more discussion of Tiny TP
receive buffering strategies.

16

Tiny Transport Protocol

2.4.4 Event/Action Table

Version 1.1

Event

Action

TTP_Connect.request(
CalledTTPSAP=sap-id,
RequestedQos=qos,
MaxSduSize=mSduSize
UserData=data)

Connected=False; AvailCredit=0; RxMaxSduSize=mSduSize;
RxSdu.size=0; RxSdu.busy=False;

n = DEFAULT_INITIAL_CREDIT /* Local Policy */

RemoteCredit=0; SendCredit=0;
if(n>127) { AvailCredit=n-127; n=127}
RemoteCredit=n;

if(mSduSize ==0)
ttpPdu =
ConnectTTP-PDU(P=0,InitialCredit=n,UserData=data);
else
ttpPdu =
ConnectTTP-PDU (P=1, InitialCredit=n,
Parameters={(PiMaxSduSize,mSdusSize)}
UserData=data);

LM_Connect.request (
CalledLsap=sap-id, RequestedQos=qos,ClientData=ttpPdu)

TTP_Connect.response(
CallingLSAP=sap-id
MaxSduSize=mSduSize
UserData=data)

AvailCredit=0;RemoteCredit=0; RxMaxSduSize = mSduSize;
RxSdu.size = 0; RxSdu.busy = False

n = DEFAULT_INITIAL_CREDIT /* Local Policy */

if(>127) { AvailCredit=n-127; n=127 }
RemoteCredit=n

if(mSduSize ==0)
ttpPdu =
ConnectTTP-PDU(P=0,InitialCredit=n,UserData=data);
else
ttpPdu =
ConnectTTP-PDU (P=1, InitialCredit=n,
Parameters={(PiMaxSduSize,mSdusSize)}
UserData=data);

LM_Connect.response(
CallingLsap=sap-id, RequestedQos=qos,ClientData=ttpPdu)
Connected=True;

TTP_Disconnect.request(UserData=data)

AppendTail(TxQueue,
[TTP Disconnect, UserData=data])

TTP_Data.request(UserData=data) U
(sizeof(UserData)==0 U !Connected)

Error;

TTP_Data.request(UserData=data) U
TxMaxSduSize == 0 U
sizeof(UserData)>(MaxSegSize) U Connected

/ISAR Disabled
Error

17

Event Action
TTP_Data.request(UserData=data) U /ISAR Enabled
TxMaxSduSize * 0 U Error

sizeof(UserData)>TxMaxSduSize U Connected

TTP_Data.request(UserData=data) U
TxMaxSduSize == 0 U sizeof(UserData)>0 U
sizeof(UserData) <= MaxSegSize U Connected

I SAR Disabled queue as a last segment.
AppendTail(TxQueue
[TTP_Segment,M=0,.UserData=data])

TTP_Data.request(UserData=data) U
TxMaxSduSize * 0 U sizeof(UserData)>0 U
(TxMaxSduSize == UnBounded U

sizeof(UserData) < TxMaxSduSize) U
Connected

/I SAR Enabled
NumSegs = INT ((sizeof(data)+MaxSegSize-1) / MaxSegSize)

I Queue all but the last segment
for(i=1;i<kNumSegs;i++) {
AppendTail(TxQueue,
[TTP_Segment, M=1, GetSegment(i,data)]
}

I Queue the last segment of the SDU
AppendTail(TxQueue,
[TTP_Segment, M=0, GetSegment(NumSegs,data)])

TTP_UData.request(UserData=data) U
IConnected

Error

TTP_UData.request(UserData=data) U
Connected

LM_UData.request(ClientData=data)

TTP_LocalFlow.request(Flow=flow)

if (flow == on)
RxSDU.busy = false;
else

RxSDU.busy = true;

LM_Connect.indication(
CallingLsap=sap-id, ResultantQos=qos,
ClientData=ConnectTTP-PDU
[P=0,InitialCredit=n,
UserData=data])

SendCredit = n; TxMaxSduSize = 0
MaxSegSize = MaxTxIrLapDataSize-3

TTP-Connect.indication(CallingTTPSAP=sap-id,
ResultantQos=qos,
MaxSduSize=TxMaxSdusSize,
UserData=data);

LM_Connect.indication(
CallingLsap=sap-id, ResultantQos=qos,
ClientData=ConnectTTP-PDU
[P=1,InitialCredit=n,
Parameters=plist,
UserData=data])

SendCredit=n; TxMaxSduSize = 0
MaxSegSize = MaxTxIrLapDataSize-3

for (‘each (pi,pv) in plist)
if (pi==PiMaxSdusSize)
TxMaxSduSize = pv;

TTP-Connect.indication(CallingTTPSAP=sap-id,
ResultantQos=qos,
MaxSduSize=TxMaxSdusSize,
UserData=data);

LM _Connect.confirm(

SendCredit=n; TxMaxSduSize = 0;

18

Tiny Transport Protocol

Version 1.1

Event

Action

CalledLsap=sap-id,
ResultantQos=qos,
ClientData=ConnectTTP-PDU
[P=0, InitialCredit=n,
UserData=data])

MaxSegSize = MaxTxIrLapDataSize-3

TTP_Connect.confirm(.CalledTTPSAP=sap-id,
ResultantQos=qos,
MaxSduSize=TxMaxSduSize
UserData=data);

Connected=True;

LM_Connect.confirm(
CalledLsap=sap-id,
ResultantQos=qos,
ClientData=ConnectTTP-PDU
[P=1, InitialCredit=n,
Parameters=plist,
UserData=data])

SendCredit=n; TxMaxSduSize = 0;
MaxSegSize = MaxTxIrLapDataSize-3

for (‘each (pi,pv) in plist)
if (pi==PiMaxSdusSize)
TxMaxSduSize = pv;

TTP_Connect.confirm(.CalledTTPSAP=sap-id,
ResultantQos=qos,
MaxSduSize=TxMaxSduSize
UserData=data);

Connected=True;

LM_Disconnect.indication(Reason=r,
ClientData=data)

Connected=False; Flush(TxQueue);
* Queue inbound disconnect to allow buffer data to drain */
AppendTail(RxQueue,

[TTP_Disconnect, Reason=r, ClientData=data]);

LM_Data.indication(
ClientData=FlowData TTP-PDU
[M=m, DeltaCredit=n,
UserData=data]) U
sizeof(UserData)==0

[* Dataless FlowData TTP-PDU */
SendCredit = SendCredit+n;

LM_Data.indication(
ClientData=FlowData TTP-PDU
[M=m, DeltaCredit=n,
UserData=data]) U
sizeof(UserData) > 0

[* Deal with the inbound Credit */
SendCredit = SendCredit+n; RemoteCredit = RemoteCredit-1;

[* Put Received Segment on Rx Queue */
AppendTail(RxQueuge,[TTP_Segment, M=m, Userdata=data])

LM UData.indication(ClientData=data)

TTP UData.indication(UserData=data)

Head(TxQueue)==
[TTP_Disconnect, UserData=data]

Connected=False;

Flush(TxQueue); Flush(RxQueue);

LM_Disconnect.request(Reason=UserRequested,
ClientData=data);

Head(TxQueue) == .
[TTP_Segment, M=m, UserData=data] U
SendCredit>0

n=AvailCredit; AvailCredit=0;
[f(n>127) { AvailCredit=n-127; n=127}
RemoteCredit=RemoteCredit+n;
SendCredit=SendCredit-1;
LM_Data.request(ClientData=
Data TTP-PDU
[M=m, DeltaCredit=n,UserData=data])

19

Event

Action

DeQueueHead(TxQueue)

(Empty(TxQueue) U SendCredit==0) U
RemoteCredit<=LowThreshold U
AvailCredit>0 U

Connected

[* Send a Dataless FlowData TTP-PDU */

n=AvailCredit; AvailCredit=0;
[f(n>127) { AvailCredit=n-127; n=127}
RemoteCredit=RemoteCredit+n;

LM_Data.request(ClientData=
Data TTP-PDU
[M=0, DeltaCredit=n,UserData=NULL])

Head(RxQueue) ==

[TTP_Segment, M=1, UserData=data] U
RxMaxSduSize * 0 U
IRxSdu.busy

* Non-terminal SDU Segment */
RxSdu.size=RxSdu.size+sizeof(data);

if(RxSdu.size<=RxMaxSduSize U
RxMaxSduSize==UnBounded) {
RxSdu.data = Reassemble(RxSdu.data,data);

}

* Recycle Segment Buffer */
DeQueueHead(RxQueue)
AvailCredit = AvailCredit+1;

(Head(RxQueue) ==
[TTP_Segment, M=0, UserData=data] U
IRXSdu.busy) U

(Head(RxQueue) ==
[TTP_Segment, M=m,UserData=data] U
RxMaxSduSize ==0) U
IRxSdu.busy)

[* Last SDU Segment or Inbound SAR disabled*/
RxSdu.size=RxSdu.size+sizeof(data)

if(RxSdu.size<=RxMaxSduSize U
RxMaxSduSize==UnBounded U
RxMaxSduSize==0)
RxSdu.data = Reassemble(RxSdu.data,data);
TTP_Data.indication(UserData=RxSdu.data, Status=OK);
}else {
TP_Data.indication(UserData=RxSdu.data,
Status=Truncated);

}

* Recycle Segment Buffer */
DeQueueHead(RxQueue)
AvailCredit = AvailCredit+1;

Head(RxQueue) ==

[TTP_Disconnect, Reason=r, ClientData=data] U

IRXxSdu.busy

Flush(RxQueue); /Should be empty anyway */
TTP_Disconnect.indication(Reason=r,ClientData=data);

Table 2-1 Tiny TP Entity - Event Action Table

20

Tiny Transport Protocol

Version 1.1

3. IrLMP IAS Object and Attributes

3.1 Exported Attributes

This section defines an attribute that is intended for use in the definition of object classes which
represent service providers that make their service available via a TTP entity.

Use of this attributes is hot mandatory, but its use is strongly encouraged in those circumstances
where an attribute is required for the same purpose as this attribute is defined.

Attribute Name

Value Type

Description

IrDA:TinyTP:LsapSel

Integer

The value carried in this attribute identifies the Ir(LMP LSAP/TTPSAP of the
TTP entity that provides access to the service represented by the containing
object

Legal values are restricted to the range 0x01-0x6f.

21

4. Appendix A Implementation Considerations

4.1 Tiny TP Buffering.

The description of Tiny TP given in Section 2.4 explicitly includes both segment buffering, the
receive buffer pool and the RxQueue and a SAR Reassembly buffer (the variable RxSDU).

4.1.1 Receive Buffer Pool

The receive buffer pool and receive queue shown in Figure 2.4 may be implemented as a circular
buffer as shown below.

Figure 4.1 Receive Buffer Pool
Organisation

If this is implemented as a circular list rather than an array, its size may be altered dynamically,
provided buffers are added or removed in the current AvailCredit region.

Note that Tiny TP can function with a single buffer in this receive buffer pool. However, a single
TTP connection cannot then take full advantage of the underlying Ir(LAP window, except for an
IrLAP window size of 1. If resources allow the size of the TTP receive buffer pool for a TTP
connection should be at least equivalent to the size of the current IrLAP receive window. In this
way a single TTP connection can the entire IrLAP window. Additional credit up to twice the IrLAP
window size enables the connection to make smooth progress without the need to rapidly advance
fresh credit as inbound PDUs are consumed and buffer space recycled.

Thus a TTP receive buffer pool size of twice the IrLAP receive window size should allow a Tiny TP
connection to progress smoothly. Nevertheless, even with a TTP receive buffer pool size of just 1
TTP will function, although progress is unlikely to be smooth.

4.1.2 SAR Reassembly Buffer

The description of Tiny TP given in this document also explicitly includes a per TTP connection
SAR reassembly buffer. However, if the API exposed by an implementation of Tiny TP supports
the partial delivery of SDUs then this buffer is entirely unnecessary. Buffering of inbound PDUs is
all this is required ie. the receive buffer pool described in the previous section. Buffers from the

22

Tiny Transport Protocol Version 1.1

RxQueue section of the pool may be delivered to the TTP client, thus freeing them to collect more
data segments.

Thus a implementation of Tiny TP with minimal buffering requirements would provide paritial SDU
delivery and use a single TTP-SDU buffer per receive buffer pool.

Another observation that may assist the implementor is that inbound Data TTP-PDUs need only be
buffered on RxQueue whilst the SAR reassembly buffer is unavailable. If the SAR buffer is
available, the data carried a freshly delivered PDU may be transferred directly.

4.1.3 Combined Buffer Pool and SAR Reassembly Buffer

Another alternative for reducing the amount of buffer space require for TTP is to combine the
buffer pool and the SAR buffer. Referring to Figure 4.1 above, the RxQueue segment performs the
function of the SAR buffer. In this case received Data TTP-PDUs are packed into the receive
buffer and the total size of the pool must equal or exceed that of client specified maximum receive
SDU size. Credit is only advanced as the amount of space under the ‘AvailCredit’ portion
successively exceeds integer multiples of the current maximum segment size. If the entire buffer
become filled with an incompletely reassembled SDU truncated delivery should occur (freeing the
buffer space) and resynchronisation is then accomplished at the next SDU boundary.

4.2 Closing TTP Connections

Tiny TP does not implement graceful disconnect. However, under normal circumstances, a
TTP_Di sconnect . request will be invoked from one end of a TTP connection. Data in the
reverse direction may be lost if it has not all been delivered to a TTP client. However, data
previously send by the TTP client that initiates the disconnect will be delivered before the
corresponding TTP_Di sconnect . i ndi cati on is delivered to the peer TTP client.

If TTP disconnect can be initiated from either end then it is necessary for TTP clients to ensure that
it is safe to close a TTP connection. Implementors of TTP clients should be aware that if no
measures are taken in the application protocol to ensure that it is ‘safe’ to close a TTP connection
(eg. an exchange of “I'm Done”, “So am | messages) prior to the invocation of
TTP_Disconnect.request data may be lost in EITHER direction.

4.3 Byte Stream v Sequenced Packet Service

Strictly, Tiny TP offers a sequence packet service. Even if MaxSduSi ze are allowed to default
during connection establishment then SDU boundaries are still maintained, however the SDU is
constrained in size to fit within a single maximum sized Data TTP-PDU.

Thus with SAR disabled, TTP may be used to implement either: a sequenced packet service,
where SDU boundaries are preserved between TTP peers but the maximum SDU size is
constrained by the maximum sized Data TTP-PDU; or a byte-stream service where there is no
guarantee that SDU boundaries are preserved between peer TTP clients.

Implementors of TTP clients should be aware of this distinction, particularly in cases where the
relative alignment of SDUs and PDUs is important to the operation of the application protocol.

23

1rDA

TTP_Disconnect

TTP_UData

1rDA

(1rLAP)

(Tiny TP)

0sl

TTP_Connect

TTP_Data

(1rLVP)

1rDA

32_2

24

32_1

	　　

