JJ-300.10

ECHONET Lite 及び IoT アプリケーション 向け ホームネットワーク通信インタフェース (IEEE802.15.4/4e/4g 920MHz 帯無線)

Home network Communication Interface for ECHONET Lite and IoT applications (IEEE802.15.4/4e/4g 920MHz-band Wireless)

第 2.3 版

2024年5月16日制定

- 般社団法人 情報通信技術委員会

THE TELECOMMUNICATION TECHNOLOGY COMMITTEE

本書は、一般社団法人情報通信技術委員会が著作権を保有しています。 内容の一部又は全部を一般社団法人情報通信技術委員会の許諾を得ることなく複製、転載、改変、転用及 びネットワーク上での送信、配布を行うことを禁止します。 目 次

<参考>	4
1. 標準の概要	
2. 本標準で規定する内容	
1.1. 2.1. 規定の対象	5
1.2. 2.2. 各方式の概要	5
3. 参照規格·参考文献	
4. 方式 A	
4.1. 概要	
 プロトコルスタック 	
4.3. 物理層部	
4.4. データリンク層 (MAC 層)部	
 インタフェース部 	
4.6. シングルホップスマートメーター・HEMS 間推奨通信仕様	
4.7. マルチホップホームネットワーク推奨通信仕様	
4.8. スマートメーター・IoT ルート無線端末間推奨通信仕様	
[付録]	
- F + + + 4 - J	

<参考>

1. 国際勧告等との関係

本標準に関連する国際標準等については、本文中に記載している。

2. 上記国際勧告等に対する追加項目等

本標準に関連する国際標準等に対するオプション選択項目、国内仕様として追加した項目、原標準に対する変更項目等については本文中に記載している。

3. 改版の履歴

版数	改 訂 日	改版内容
1	2013年2月21日	制定
2	2014年2月20日	方式 A に関する仕様内容の追加 (5.6 セキュリティ処理、5.7 フレームフォーマット、5.9 シングルホップスマートメーター・ HEMS 間推奨通信仕様、を追加、他)
2.1	2014 年 5 月 22 日	方式 B に関し、ZigBee IP の改定に合わせてパラメータ値を修 正。 (6.6.1, 6.6.2, 6.6.3, 6.7, 6.7.3, 表 6-29(旧版の表 6- 31)の記述変更、および旧版の表 6-34 を削除)
2.2	2015年3月11日	誤記訂正。 (5.9.3.2.1 (3), 5.9.3.2.4 (4), 6.2.10.1, 6.3.5.1 11, 6.3.8.4)
2.3	2024年5月16日	記載内容を方式Aのみとし、付録にWi-SUN Allianceの関係する仕様書を追加。

4. 工業所有権

本標準に係る「工業所有権等の実施に係る確認書」の提出状況はTTCのホームページでご覧になれます。

5. その他

(1) 参照する主な勧告、標準

本文中に記載する。

6. 標準作成部門

第1版:次世代ホームネットワークシステム専門委員会
第2版:次世代ホームネットワークシステム専門委員会
第2.1版:次世代ホームネットワークシステム専門委員会
第2.2版:次世代ホームネットワークシステム専門委員会
第2.3版:IoTエリアネットワーク専門委員会

1. 標準の概要

本標準は、ECHONET Lite プロトコルを使用した家電機器、共同検針や特定計量等で使用される計器が接続される IoT ルート無線端末等の遠隔制御やモニタリング等を実現するホームネットワークを構築するためのプロトコルのうち、920MHz 特定小電力無線における仕様を規定した文書である。

2. 本標準で規定する内容

2.1. 規定の対象

ECHONET Lite や IoT アプリケーションを 920MHz 帯無線(IEEE802.15.4/4e/4g)の無線で利用するときに は、以下の様な選択肢がある。

a. ネットワーク層プロトコルとして IPv6 ならびに 6LoWPAN を用いる

b. ECHONET Lite や IoT ルートアプリケーション電文を直接 IEEE802.15.4 フレームに載せる

プロトコルスタック	プロトコル・規定					
セッション~アプリケーション層	ECHONET I	ケーション				
トランスポート層プロトコル	UDP	ТСР	b. Layer2 のフ			
			レーム上に直接			
ネットワーク層プロトコル	a. IPv6	搭載				
データリンク層プロトコル	IEE	le/g				
物理層プロトコル	IEEE802.15.4, IEEE802.15.4g					
媒体	電波(920MHz 帯)					

表 2-1: 920MHz 帯無線

本標準のスコープは、aであり、そのうち、トランスポート層プロトコルとして UDP を使用する方式(方式 A) について規定する。

2.2. 各方式の概要

本標準では、以下の方式を規定する。

表 2-2:本標準で規定する方式

方式	表1における選択肢	関連する団体			
方式 A	а	エコーネットコンソーシアム テレメータリング推進協議会	Wi-SUN Alliance		

方式 A は、物理層、データリンク層(IEEE802.15.4/4e/4g)の上に、IPv6/6LoWPAN、UDP 層(およびオプショ ンとして TCP 層)を設けて ECHONET Lite や IoT ルートアプリケーションの電文を載せる。

3. 参照規格·参考文献

本標準が規定する仕様の一部を構成する内容を含む規格および関連する規格を以下に示す。 参照規格・参考文献について改訂があった場合は、本標準に基づく実装は改訂後の最新版を適用すること を推奨する。他の参照規格については、その限りではない。

[付録] 2.1 および 2.2 参照

4. 方式 A

4.1. 概要

[付録] 3.1 参照

4.2. プロトコルスタック[付録] 3.2 参照

4.3. 物理層部

[付録] 3.3 参照

4.4. データリンク層 (MAC 層)部[付録] 3.4 参照

4.5. インタフェース部

[付録] 3.5 参照

4.6. シングルホップスマートメーター・HEMS 間推奨通信仕様 [付録] 3.7 参照

4.7. マルチホップホームネットワーク推奨通信仕様 [付録] 3.10 参照

4.8. スマートメーター・IoT ルート無線端末間推奨通信仕様 [付録] 3.11 参照

[付録]

	WI SUN Alliance
1 2	Wi-SUN Alliance
3 4 5 6	Home Area Network (HAN) Working Group
7 8 9	
10 11 12	Wi-SUN Profile for HAN
12 13 14 15	Revision 2v10
16 17 18 19	Released for TTC JJ-300.10
20 21 22	
23 24 25	

Home Area Network Working Group
Home Area Network Technical Profile Specification
ument is provided under the terms of the agreement (21 Feb. 2013) between Wi-
iance and TTC. The contents of this document are jjointly Copyright © Wi-SUN
Alliance ™ and TTC (Telecommunication and Technology Committee).

1. Notices

1.1. Copyright

The contents of this document are Copyright © Wi-SUN Alliance [™] and are strictly
 confidential. No information contained herein may be supplied to any other party without
 prior written permission from an authorized Wi-SUN Alliance representative.

36

1.2. Provisional Document

This document is a work-in-progress and is subject to change. The specifications in this document are minimum requirement for implementers. Additional information on this specification will be in Wi-SUN PHY/MAC/Interface specification documents for ECHONET Lite [Wi-SUN-PHY] [Wi-SUN-MAC]

42

1.3. Revision History

44 45

43

Table 4.8-1 Revision History

Version	Date	Author	Comments	
0v00	26 Jan 2013	Edited by NICT	Provide Wi-SUN profile for Echonet Lite r3	
0v01	20 Feb 2013	Edited by Phil Beecher	Derived from Wi-SUN profile for Echonet Lite r3	
0v02	8 April 2013	Edited by NICT and TOSHIBA	 Introduced security configuration in 3.5.7 for Echonet Lite over IP system Split previous Recommended usage section into 3.6 single-hop home network section and 3.7 single-hop smart meter-HEMS section (defined PHY/MAC/Interface parameters in each sections) 	

			-	Modified/changed: 6LP1.2, 6LP2, 6LP3, 6LP7, 6LP9 in Table 3.5-1, ND4 in Table 3.58, and 6HC1.2, 6HC2.1, 6HC2.2 in Table 3.5-3.
			-	Typo/grammatical corrections and clarifications
2v01	23 October 2013	Edited by TOSHIBA	-	Introduced the usage of Route-B credential in 3.7.7
		and Renesas	-	Changed RX sensitivity value to follow 802.15.4g in Table 3-29.
			-	Profile version number correction: 0v02 should be 2v00. Therefore this revision has to be 2v01.
			-	NS and NA messages have to carry EUI-64 format addresses in Table 3-16.
			-	Added how many KeyDescriptors to hold at same time (\S 3.7.5.3.1)
			-	Some editorial corrections
2v02	24 January 2014	Edited by TOSHIBA	-	Added the usage of list termination IE in EB/EBR for single-hop smart meter-HEMS network (§ 3.7.6.1.1)
			-	Transmission of NS message is optional for single-hop smart meter-HEMS network (\S 3.7.4.3.2)
		-	Additional statements for clarification in Network layer section (\S 3.7.4.3) for single- hop smart meter-HEMS network. Unnecessary functions in the single-hop network are made to be optional.	
			-	Added a notation "50kbps is optional" in the single-hop smart meter-HEMS network (\S 3.7.2).

			 CSM is not supported if 50kbps is not supported in the single-hop smart meter- HEMS network(§ 3.7.2)
			 Changed the notation of supporting 50kbps/100kbps for clarification in the single-hop home network (§ 3.6.2)
			- Table/Figure number corrections
2v03	16 June 2014	Edited by TOSHIBA	 Added a remark and a notation in Table 3.6-9 macAckWaitDuration
			 New Support status 'Irrelevant' in Table 3.7- 4 'Network Layer: IPv6' and 3.7-5 'Network Layer: ICMPv6'.
			 Added a description about maximum link MTU size issue (§ 3.7.4.5)
2v04	04 26 Edited by September 2014 NICT, Renesas, and TOSHIBA	Anritsu, NICT,	 Added § 3.8 Recommended usage for single-hop home network among devices (TOSHIBA)
		 Added § 3.9 Recommended usage for the home area network (HAN) employing relay among devices (Anritsu, NICT, and Renesas) 	
			Above sub-sections are based on the HAN tiger team discussion. The tiger team members include Anritsu, Mitsubishi, NEC, NICT, NSS, Panasonic, Procubed, Renesas, and Toshiba.
2v05	14 April	Edited by	- Revised: § 3.8 and § 3.9
	2015 Anritsu, NICT,OKI, Renesas, and TOSHIBA	 New: Sleeping end device support described in § 3.10 	
		- Reference number corrections	
			 Added a clarification of the Header IE list termination usage in § 3.6.3.2
2v06	7 September 2015	Edited by Anritsu, NICT,OKI,	 Added clarifications of Active scan and Capability Notification IE usage in the

HAN Working Group

		TOSHIBA, and TUV		clauses 3.6.6.1.1, 3.7.6, 3.7.6.1.1, 3.8.3.1, 3.8.6.1.1, Table 3.7-3.								
			-	Revised clause 3.8.1								
			-	Added resolution of IPv6 ND with Relay device in 3.9.6.1.2								
			-	Unified relay related IE names: SRA ID and SLR IE								
			-	Introduced New PANA REQ-Timeout- Modification-Requet AVP for PANA Key Exchange with Sleeping Device in 3.10.5								
			-	Fixed typo.								
2v07	16 December	Edited by Anritsu,	-	LOWPAN_IPHC format for multicast packet in 3.5.2								
	2015	NICT, OKI, Panasonic,	-	Header IE list terminator notation in 3.6.3.2								
		and TOSHIBA	-	Recommended "Scanduration' value in 3.8.6.1.1								
			-	Recommended interval time between Enhanced Active Scans in 3.8.8								
			-	Changed the byte order of the relay related IEs to little endian in 3.9.3.2.3								
											-	Intermediate hop 1-N subfileds are necessary and fixed typo in Figure 3.9-4 SLR IE
				-	Capability Notification IE is necessary for both EBR and EB in 3.9.8.							
				-	Behavior when exceeded number of intermediate hops is found in SRA or SLR is described in 3.9.9.							
			-	Minimum mandatory for indirect transmission buffer is notified in 3.10.3.1.1.								
			-	Variable setting for macTransactionPersistenceTime is described in 3.10.3.1.1								

			-	A limitation for 6LoWPAN fragmentation is
				notified in 3.10.4.2.
			-	Destination address of SLR IE for multicast indirect transmission in 3.10.4.3.3
			-	PANA Time Out. modification sequence is recommended to be limited at initial join sequence. Specified in 3.10.5.
			-	The ranges of REQ_IRT and REQ_MRT are notified in 3.10.5.
			-	How to register sleep end device in a coordinator and aging of registration is described in 3.10.6.1.1.
			-	Data request frame shall not be encrypted. This is noted in 3.10.3.1.2.
			-	Multicast transmission in 3.9.11
			-	Fixed Typo
2v08	6 July 2016	Edited by Anritsu, OKI, and	-	Reflected from the latest errata document ("Errata for Profile Technical Specifications and Test Specifications" 0v06)
		TOSHIBA	-	Fixed reference errors
			-	Replaced the recommended scan duration value 6 with 5 for IEEE 802.15.4g conformity
			-	Replaced with new Wi-SUN logo
2v09	1 October	Edited by	-	New Route-IoT support described in 3.11
	2021	ROHM and TOSHIBA	-	1.4 Acknowledgements section added
			-	Fixed Typo
2v09	21 November	Edited by TOSHIBA	-	Chaneged Title and WG name on the cover (+header and footer) ("echonet" to "HAN")
	2022		-	(The version number 2v09 is not changed)
2v10	11 April 2023	Edited by ROHM	-	Usage of credential for Route-IoT updated (3.11.7)

46

47	1.4. Acknowledgements								
48 49	The Wi-SUN Alliance acknowledges the substantial efforts of the following individuals who contributed to the production of this document.								
50									
51	HAN Version 2v03 contributors:								
52	· Fumihide Kojima, NICT	54	· Hoang Vinh Dien, NICT (Secretary)						
53	· Hiroshi Harada, NICT (Chair)	55	· Mitsuru Kanda, Toshiba (Technical Edito	r)					
56									
57	HAN Version 2v04 contributors:								
58	· Amarjeet Kumar, Procubed Inc.	63	· Keiichi Teramoto, Toshiba						
59	· Anand M, Procubed Inc.	64	· Koichi Sato, Renesas						
60	· Fumihide Kojima, NICT	65	· Mitsuru Kanda, Toshiba (Technical Edito	r)					
61	· Hiroshi Harada, NICT (Chair)	66	· Toyoyuki Kato, Anritsu						
62	· Hoang Vinh Dien, NICT (Secretary)								
67	· HAN tiger team:								
68	· Akiyoshi Yagi, Mitsubishi Electric	79	· Mitsuru Kanda, Toshiba						
69	· Bhupender Virk, Procubed Inc	80	· Osamu Miyashita, Anritsu						
70	· Daisuke Takita, Mitsubishi Electric	81	· Satoshi Okage, Panasonic						
71	· Fumihide Kojima, NICT	82	· Shigekazu.Harada, NEC						
72	· Fumio Sato, Toshiba	83	· Takashi Asai, Renesas						
73	· Hiroshi Harada, NICT	84	· Tetsuya Tamura, Anritsu						
74	· Yoshihiro Izumi, NISSIN SYSTEMS	85	· Tomohito Ikeya, Anritsu						
75	· Junichi Iwana, Renesas	86	· Tomoki Takazoe, Panasonic						
76	· Keiichi Teramoto, Toshiba	87	 Toyoyuki Kato, Anritsu 						
77	· Koichi Sato, Renesas	88	· Verotiana Rabarijaona, NICT						
78	· Mikiharu Ishii, NEC	89	· Yoshio Kashiwagi, NISSIN SYSTEN	1S					

Wi-SUN Profile for HAN

 $14 \hspace{0.1 cm} {\rm of} \hspace{0.1 cm} 206 \hspace{0.1 cm}$

HAN Working Group

90				
91	HAN Version 2v05 contributors:			
92	· Fumihide Kojima, NICT	95	•	Mitsuru Kanda, Toshiba (Technical Editor)
93	· Hiroshi Harada, NICT (Chair)	96	•	Koichi Sato, Renesas
94	· Hoang Vinh Dien, NICT (Secretary)	97	•	Toyoyuki Kato, Anritsu
98				
99	HAN Version 2v06 contributors:			
100	· Fumihide Kojima, NICT	103	•	Olga Kozeruk, TUV
101	· Hiroshi Harada, NICT (Chair)	104	•	Verotiana Rabarijaona, NICT
102	· Mitsuru Kanda, Toshiba (Techinical Editor	r)		
105				
106	HAN Version 2v07 contributors:			
107	· Fumihide Kojima, NICT	112	•	Tomohito Ikeya, Anritsu
108	· Hiroshi Harada, NICT (Chair)	113	•	Toyoyuki Kato, Anritsu
109	Mitsuru Kanda, Toshiba (Technical Editor) 114	•	Yoshihisa Nakano, OKI
110	 Noriyuki Sato, OKI 	115	•	Verotiana Rabarijaona, NICT
111	· Satoshi Okage, Panasonic			
116				
117	HAN Version 2v08 contributors:			
118	· Fumihide Kojima, NICT	121	•	Noriyuki Sato, OKI
119	· Hiroshi Harada, NICT (Chair)	122	•	Toyoyuki Kato, Anritsu
120	· Mitsuru Kanda, Toshiba (Chair)			
123				
124	HAN Version 2v09 contributors:			
125	· Hiroshi Harada, NICT (Chair)	127	•	Kiyoshi Fukui, OKI
126	Mitsuru Kanda, Toshiba (Technical Editor) 128	•	Yuki Matsumura, ROHM
129				

1	30	
I	50	

Contents

131	<u>1 NOT</u>	<u>CICES</u>	
132	<u>1.1</u> <u>Co</u>	pyright	9
133	<u>1.2</u> Pro	ovisional Document	9
134	<u>1.3</u> <u>Re</u>	vision History	9
135	<u>1.4</u> <u>Ac</u>	knowledgements	
136	<u>2</u> <u>REF</u>	' <u>ERENCES</u>	
137	<u>2.1 No</u>	ormative references	
138	<u>2.2</u> Inf	ormative References	
139	<u>3 WI-</u>	SUN PROFILES (ECHONET LITE OVER IP)	
140	<u>3.1</u> Ov	/ <u>erview</u>	
141	<u>3.2</u> Pro	otocol stack	
142	3.3 PH	IY part	
143	3.3.1	Overview	
144	3.3.2	PHY specification	
145	3.4 M/	AC part	
146	3.4.1	Overview	
147	3.4.2	Beacon mode profile	
148	3.4.3	Non-beacon mode profile	
149	3.5 Wi	i-SUN ECHONET Lite interface part	
150	3.5.1	Overview	
151	3.5.2	Requirement	
152	3.5.3	Adaptation layer	
153	3.5.4	Network layer	
154	3.5.5	Transport layer	
155	3.5.6	Application layer	
156	3.5.7	Security configuration	63
157	3.5.8	Frame format	
158	<u>3.6</u> <u>Re</u>	commended usage for single-hop home network	
159	3.6.1	Overview	
	0.0.1		

Wi-SUN Profile for HAN

 $16 \ {\rm of} \ 206$

HAN Working Group

161	3.6.3	MAC part	69
162	3.6.4	Interface part	
163	3.6.5	Security configuration	
164	3.6.6	Recommended network configurations	
165	<u>3.7</u> <u>Re</u>	commended usage for single-hop smart meter-HEMS network	91
166	<u>3.7.1</u>	<u>Overview</u>	91
167	<u>3.7.2</u>	PHY part	91
168	<u>3.7.3</u>	MAC part	93
169	<u>3.7.4</u>	Interface part	
170	<u>3.7.5</u>	Security configuration	
171	<u>3.7.6</u>	Recommended network configurations	
172	<u>3.7.7</u>	Usage of credential in Japanese market Route-B (supplemental)	
173	3.8 Re	commended usage for single-hop home area network (HAN) among devices	112
173	<u>3.8</u> <u>Ne</u> 3.8.1	Overview	
174	<u>3.8.1</u> 3.8.2	PHY part	
175	<u>3.8.2</u> <u>3.8.3</u>	MAC part	
170	<u>3.8.4</u>	Interface part	
177	<u>3.8.4</u> 3.8.5	Security configuration	
178	<u>3.8.5</u> 3.8.6	Recommended network configurations	
179	<u>3.8.7</u>	Usage of credential	
180	<u>3.8.7</u> 3.8.8	Discovery and selection of the HEMS network	
101	<u>3.8.8</u>		
182	3.9 Re	commended usage for multi-hop home area network employing relay device	147
183	3.9.1	<u>Overview</u>	147
184	3.9.2	PHY part	
185	3.9.3		
186	3.9.4	Interface part	
187	3.9.5	Security configuration	
188	3.9.6	Recommended network configurations	
189	3.9.7	Usage of credential	
190	3.9.8	Discovery and selection of the HEMS network	
191	3.9.9	Route Information	
192	3.9.10	Unicast Transmission	
193	3.9.11	Multicast Transmission	
194		commended usage for home area network among devices with an extension of sleeping e	nd device support
195	17		
196	<u>3.10.1</u>	Overview	
197	<u>3.10.2</u>	PHY part	
198	<u>3.10.3</u>	MAC part	
199	<u>3.10.4</u>	Interface part	
200	<u>3.10.5</u>	Security configuration	
201	<u>3.10.6</u>	Recommended network configurations	
202	<u>3.10.7</u>	Usage of credential	
203	<u>3.10.8</u>	Discovery and selection of the HEMS network	
204	<u>3.11</u> <u>Re</u>	commended usage for Route-IoT network	

Wi-SUN Profile for HAN

 $17 \ {\rm of} \ 206$

HAN Working Group

205	<u>3.11.1</u> <u>Overview</u>	
206	<u>3.11.2</u> PHY part	
207	<u>3.11.3</u> <u>MAC part</u>	
208	3.11.4 Interface part	
209	3.11.5 Security configuration	
210	3.11.6 Recommended network configurations	
211	3.11.7 Usage of credential	
212	3.11.8 Discovery and selection of the smart meter network	
213	4 WI-SUN PROFILES (ECHONET LITE OVER NON IP)	
214	<u>4.1</u> <u>Overview</u>	
215	4.2 Protocol stack	
216	4.3 PHY part	
217	<u>4.4 MAC part</u>	
218	4.5 Wi-SUN ECHONET Lite Interface part	
219	4.5.1 <u>Overview</u>	
220	4.5.2 Requirement	
221	4.6 Application layer	
222	4.7 <u>Security</u>	
223	<u>4.8</u> <u>Device ID</u>	
224	4.9 Frame format	
225	4.9.1 The case interface part is employed	
226	4.9.2 The case interface part is not employed	
227	4.10 Recommended usage for single-hop network	
228	<u>4.10.1</u> <u>Overview</u>	
229	4.10.2 Construction of new network	
230	4.10.3 Association to the network	
231	4.10.4 Specifications for device/PHY layer/MAC layer in order to realize the recommer	nded usage 206
232		

233 2.References

234 2.1. Normative references

This section lists the normative references that define partial specifications of this standard or ones that are related to the standard.

This document is to recommend that any update in those references should be reflected in the subsequent implementations according to the standard.

239 240	[6LOWPAN]	Transmission of IPv6 Packets over IEEE 802.15.4 Networks (6LoWPAN), IETF RFC 4944
241 242	[6LPHC]	Compression Format for IPv6 Datagrams in 6LoWPAN Networks, IETF RFC 6282
243 244	[6LPND]	Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs), IETF RFC 6775
245 246 247 248 249 250	[802.15.4]	IEEE Std. 802.15.4 - 2011 [™] , IEEE Standard for Information Technology - Telecommunications and Information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), September 2011
251 252 253	[802.15.4e]	IEEE Std. 802.15.4e-2012 [™] , Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) - Amendment 1: MAC sub-layer, April 2012.
254 255 256 257	[802.15.4g]	IEEE Std. 802.15.4g-2012 [™] , Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) - Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks, April 2012.
258 259	[802.15.10]	"P802.15.10 [™] /D01 Draft Recommended Practice for Routing Packets in 802.15.4 Dynamically Changing Wireless Networks
260 261	[T108]	ARIB STD-T108 920MHz-BAND. TELEMETER, TELECONTROL. AND DATA TRANSMISSION RADIO. EQUIPMENT
262	[AES-CCM]	NIST SP800-38C
263	[AES-GCM]	NIST SP800-38D
264	[EAP]	Extensible Authentication Protocol (EAP), IETF RFC 3748

265 266	[EAP-PSK]	The EAP-PSK Protocol: A Pre-Shared Key Extensible Authentication Protocol (EAP) Method, IETF RFC 4764
267	[EL]	The ECHONET Lite Specification Version 1.01
268	[IPv6]	Internet Protocol, Version 6 (IPv6) Specification, IETF RFC 2460
269 270	[IPv6-DHCP]	"IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6, IETF RFC 3633
271	[AH]	IP Authentication Header, IETF RFC 4302
272	[ESP]	IP Encapsulating Security Payload (ESP), IETF RFC 4303
273 274	[HMAC-SHA256]	Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec, IETF RFC 4886
275	[IPv6-RH]	Deprecation of Type 0 Routing Headers in IPv6, IETF RFC 5095
276	[IPv6-SAA]	IPv6 Stateless Address Autoconfiguration, IETF RFC 2462
277 278	[ICMP6]	Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification, IETF RFC 4443
279	[IP6ADDR]	IP Version 6 Addressing Architecture, IETF RFC 4291
280 281	[MLE]	Mesh Link Establishment, IETF draft-kelsey-intarea-mesh-link- establishment-06
282	[NAI]	The Network Access Identifier, IETF RFC 4282
283	[ND]	Neighbor Discovery for IP version 6 (IPv6), IETF RFC 4861
284 285	[PANA]	Protocol for Carrying Authentication for Network Access (PANA), IETF RFC 5191
286 287	[PANA-ENC]	Encrypting the Protocol for Carrying Authentication for Network Access (PANA) Attribute-Value Pairs, IETF RFC 6786
288	[SLAAC]	IPv6 Stateless Address Autoconfiguration, IETF RFC 4862
289	[TCP]	Transmission Control Protocol (TCP), IETF RFC 793
290	[UDP]	User Datagram Protocol (UDP), IETF RFC 768
291	[ULA]	Unique Local IPv6 Unicast Addresses, IETF RFC 4193
292 293	[USRK]	Specification for the Derivation of Root Keys from an Extended Master Session Key (EMSK), IETF RFC 5295

294 295	[Wi-SUN-PHY]	Wi-SUN PHY specification document for ECHONET Lite, 20120212- PHYWG-Echonet-Profile-0v01
296 297	[Wi-SUN-MAC]	WI-SUN MAC specification document for ECHONET Lite, 20120212- MACWG-Echonet-Profile-0v01
298 299	[Wi-SUN-MAC]	WI-SUN Interface specification document for ECHONET Lite, 20120212-IFWG-Echonet-Profile-0v01
300	[Wi-SUN-CTEST]	Wi-SUN conformance test specification for ECHONET Lite
301	[Wi-SUN-ITEST]	Wi-SUN interoperability test specification for ECHONET Lite
302		
303	2.2. Informativ	ve References

304 None

305 3.Wi-SUN profiles (ECHONET Lite over IP)

306 **3.1. Overview**

This section defines physical (PHY) and data link layers profiles and Wi-SUN ECHONET Lite 307 interface to communicate between devices using IP and IEEE 802.15.4g and 4/4e. Wi-SUN 308 ECHONET-Lite interface is an interface between ECHONET Lite application part and physical 309 and MAC layers for transmission of ECHONET Lite application data from one device to the 310 other devices. Figure 4.8-1 shows the scope defined by this document. Figure 4.8-2 shows 311 the Wi-SUN profile layer structure. In this section, the mark of "M" indicates the mandatory 312 functions in the standards [802.15.4], [802.15.4g] and [802.15.4e], and "O" means optional 313 functions. The marks of "Y" and "N" mean the required and not-required functions in 314 ECHONET Lite operation, respectively. Specifications and procedures for certification and 315 interoperability tests are provided by [Wi-SUN-PHY], [Wi-SUN-MAC], [Wi-SUN-IF], [Wi-SUN-316 CTEST] and [Wi-SUN-ITEST]. 317

318

Device 1

Device 2

Figure 4.8-1 Scope defined by this section

320 321

319

322

323 3.2. Protocol stack

324	Protocol stack for the device defined by this profile is shown in Figure 4.8-2.
325 326 327 328	 PHY layer provides the following service under this profile. Up-to-2047 bytes PSDU exchange (Note that the profile recommends 255 bytes or less as mentioned later)
329	Data link (MAC) layer provides the following services under this profile.
330 331	 Successful discovery of IEEE 802.15.4 PAN in radio propagation range
332	Support of low energy hosts that can change its status between active and sleep status
333 334	 Security functions that includes encryption, manipulation detection and replay attack protection (Note that key management is not performed by this layer)
335 336 337	6LoWPAN adaptation layer provides the following services under this profile.IPv6 and UDP header compression and decompression
338 339	 Fragmentation and defragmentation of IPv6 packet that exceeds maximum payload size operable by data link layer
340	 Neighbor discovery (Not necessary when done by the network layer)
341 342 343	Network layer provides the following services under this profile.IPv6 address management and packetizing
344	 Neighbor discovery (Not necessary when done by the adaptation layer)
345	 IPv6 stateless address autoconfiguration and duplicate address detection (DAD)
346	IPv6 packet forwarding
347	ICMPv6 support
348	 IPv6 packet multicast transmission and reception
349 350 351	Transport layer provides the following service under this profile.Packet delivery that is not guaranteed by UDP
352 353 354 355	 Application layer provides the following services under this profile. Detection of functional units (ECHONET object) employed by the other nodes in the network

356	•	Acquisition of parameters and statuses (ECHONET property) for the other nodes
357	•	Configuration of parameters and statuses for other nodes
358	•	Notification of parameters and statuses for the local node
359	•	Security configuration is provided by PANA for ECHONET Lite over IP
360		PANA runs over UDP and provides security capabilities below:
361		Mutual authentication between coordinator and host
362		♦ Link layer ciphering key management after successful authentication
363		

389 3.3. PHY part

390 **3.3.1.** Overview

This section defines the PHY profiles required for PHY part supporting ECHONET Lite applications. The profiles are based on features and capabilities defined in standards [802.15.4] and [802.15.4g]. For each profile, references are given to the appropriate subclauses in [802.15.4] and [802.15.4g].

395

- 396 3.3.2. PHY specification
- 397 3.3.2.1. PLF and PLP capabilities

The requirements for the PHY Layer Function (PLF) and PHY Layer Packet (PLP) are described in **Table 4.8-2**.

400

Table 4.8-2 PLF and PLP capabilities

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory, O:Option)	Support (Y:Yes, N:No, O:Option)
PLF1	Energy detection (ED)	[802.15.4]8.2.5	FD1:M	FD1:Y
PLF2	Link quality indication (LQI)	[802.15.4]8.2.6	М	Y
PLF3	Channel selection	[802.15.4]8.1.2	М	Y
PLF4	Clear channel assessment (CCA)	[802.15.4]8.2.7	М	Y
PLF4.1	Mode 1	[802.15.4]8.2.7	0.2	Y
PLF4.2	Mode 2	[802.15.4]8.2.7	0.2	Ν
PLF4.3	Mode 3	[802.15.4]8.2.7	0.2	Ν

HAN Working Group

PLP1	PSDU size up	[802.15.4g]9.2	FD8:M	Y
	to 2047 octets			

401

402 **3.3.2.2. RF capabilities**

- The requirement for the RF capabilities is described inTable 4.8-3.
- 404

Table 4.8-3 RF capabilities

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory, O:Option)	Support (Y:Yes, N:No, O:Option)
RF12	SUN PHYs			
RF12.1	MR-FSK	[802.15.4g] 18.1	FD8:M	Y(*1)
RF12.2	MR-OFDM	[802.15.4g] 18.2	FD8:O	Ν
RF12.3	MR-O-QPSK	[802.15.4g] 18.3	FD8:O	Ν
RF12.4	MR-FSK-Generic PHY	[802.15.4g] 8.1.2,10.2	RF12.1:O	N
RF12.5	Transmit and receive using CSM	[802.15.4g] 8.1a	M	Y
RF12.6	At least one of the bands given in Table 66 [802.15.4g]	[802.15.4g] 8.1	FD8:M	Y (920 MHz, *2)
RF13	SUN PHY operating modes			
RF13.4	Operating mode #1 and #2 in 920 MHz band	[802.15.4g] 18.1	FD8:M	Y
RF 13.5	Operating mode #3 and #4 in 920 MHz band	[802.15.4g] 18.1	FD8:O	N
RF14	MR-FSK Options			·
RF14.1	MR-FSK FEC	[802.15.4g] 18.1.2.4	0	N
RF14.2	MR-FSK interleaving	[802.15.4g] 18.1.2.5	0	N

RF14.3	MR-FSK data whitening	[802.15.4g] 18.1.3	0	Y
RF14.4	MR-FSK mode switching	[802.15.4g]18.1.4	0	N

*1: The frequency tolerance requirements in [802.15.4g] 18.1.5.3 do not apply. The
frequency tolerance shall be +-20ppm.

*2: All channels shown in [802.15.4g] Table 68d within the supported operating mode(s) for
 the respective band shall be supported.

409

410 3.4. MAC part

411 **3.4.1. Overview**

This section defines Wi-SUN 15.4 and 15.4e MAC profiles for MAC part. The capabilities are generated from standards [802.15.4] and [802.15.4e], and summarized in the Tables.

Nodes defined by this profile employ 64 bit address out of MAC address modes defined by
 [802.15.4]. 64 bit EUI-64 address shall be stably allocated to each device. This address is
 globally unique and is expected permanently stable for the device.

Clause 3.4.2 defines the support required for Beacon-enabled deployments and Clause
 3.4.3 defines the support required for Non-Beacon-enabled deployments. Either of those
 two deployments shall be implemented by this data link profile.

- 420
- 421 **3.4.2.** Beacon mode profile

This sub-clause defines Wi-SUN 15.4 and 15.4e MAC profiles for ECHONET Lite, when beacon-enabled PAN is employed.

- 424 3.4.2.1. Functional device (FD) types
- The requirements for the functional device types are described in **Table 4.8-4**.

Table 4.8-4 Functional device types

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory, O:Option)	Support (Y:Yes, N:No, O:Option)
FD1	FFD	[802.15.4] 5.1	0.1	0.1
FD2	RFD	[802.15.4] 5.1	0.1	0.1
FD3	Support of 64 bit IEEE address	[802.15.4] 5.2.1.1.6	М	Y
FD4	Assignment of short network address (16 bit)	[802.15.4] 5.1.3.1	FD1:M	FD1:Y
FD5	Support of short network address (16 bit)	[802.15.4] 5.2.1.1.6	М	Y
FD8	SUN PHY device	[802.15.4g] 8.1	0.2	Y (#1)

427

- 428 O.1: Optional but at least one of the features described in FD1 and FD2 is required to be 429 implemented
- 430 O.2: At least one of these features is supported
- 431 **#1: MR-FSK is employed.**
- 432
- 433 3.4.2.2. Major capabilities for the MAC sub-layer
- The major capabilities for the MAC sub-layer are described in this sub-clause.
- 435
- 436 3.4.2.2.1.MAC sub-layer functions
- ⁴³⁷ The MAC sub-layer function requirements are described in **Table 4.8-5**.

Table 4.8-5 MAC sub-layer functions

ltem number	Item description	Reference section in standard	Status in standard (M:Mandator y, O:Option)	Support (Y:Yes, N:No, O:Optio n)
MLF1	Transmission of data	[802.15.4] 6.3	М	Y
MLF1.1	Purge data	[802.15.4]6.3.4,6.3 .5	FD1:M	FD1:Y
			FD2:O	FD2: N
MLF2	Reception of data	[802.15.4] 6.3	Μ	Y
MLF2.1	Promiscuous mode	[802.15.4] 5.1.6.5	FD1:M	FD1:Y
			FD2:O	FD2: N
MLF2.2	Control of PHY receiver	[802.15.4] 6.2.9	0	N
MLF2.3	Timestamp of incoming data	[802.15.4] 6.3.2	0	N
MLF3	Beacon management	[802.15.4] 5	М	Y
MLF3.1	Transmit beacons	[802.15.4] 5, 5.1.2.4	FD1:M	FD1:Y
			FD2:O	FD2: N
MLF3.2	Receive beacons	[802.15.4] 5, 6.2.4	М	Y
MLF4	Channel access mechanism	[802.15.4] 5, 5.1.1	М	Y
MLF5	Guaranteed time slot (GTS)	[802.15.4] 5, 6.2.6,	0	N
	management	5.3.9, 5.1.7		
MLF5.1	GTS management (allocation)	[802.15.4] 5, 6.2.6,	0	N
		5.3.9, 5.1.7		
MLF5.2	GTS management (request)	[802.15.4] 5, 6.2.6,	0	N
		5.3.9, 5.1.7		
MLF6	Frame validation	[802.15.4] 6.3.3, 5.2, 5.1.6.2	М	Y
MLF7	Acknowledged frame delivery	[802.15.4] 5, 6.3.3, 5.2.1.1.4, 5.1.6.4	М	Y

MLF8	Association and disassociation	[802.15.4] 5, 6.2.2, 6.2.3, 5.1.3	М	Y
MLF9	Security	[802.15.4] 7	М	Y
MLF9.1	Unsecured mode	[802.15.4] 7	М	Y
MLF9.2	Secured mode	[802.15.4] 7	0	Y
MLF9.2.1	Data encryption	[802.15.4] 7	O.4	Y
MLF 9.2.2	Frame integrity	[802.15.4] 7	0.4	Y
MLF10.1	ED	[802.15.4] 5.1.2.1,	FD1:M	FD1:Y
		5.1.2.1.1	FD2:O	FD2: N
MLF10.2	Active scanning	[802.15.4]	FD1:M	FD1:Y
		5.1.2.1.2	FD2:O	FD2:Y
MLF10.3	Passive scanning	[802.15.4] 5.1.2.1.2	М	Y
MLF10.4	Orphan scanning	[802.15.4] 5.1.2.1, 5.1.2.1.3	М	Y
MLF11	Control/define/determine/decl are superframe structure	[802.15.4] 5.1.1.1	FD1:O	FD1:O
MLF12	Follow/use superframe structure	[802.15.4] 5.1.1.1	0	Y
MLF13	Store one transaction	[802.15.4] 5.1.5	FD1:M	FD1:Y
MLF14	Ranging	[802.15.4] 5.1.8	RF4:O	N
MLF14.1	DPS	[802.15.4] 5.1.8.3,6.2.15	0	N
MLF15(4 g)	MPM for all coordinators when operating at more than 1% duty cycle	[802.15.4g] 5.1.13	М	FD8:Y
MLF15	TSCH Capability	[802.15.4e]Table 8a	0	N

MLF16	LL Capability	[802.15.4e]Table 8b	0	N
MLF17	DSME Capability	[802.15.4e] 6.2,	0	N
		Table 8c		
MLF18	EBR capability	[802.15.4e] 5.3.12	0	Y
MLF18.1	EBR commands	[802.15.4e] 5.3.7	MLF18:O	Y
MLF18.1.	EBR Enhanced Beacon	[802.15.4e] 5.3.7.2	FD1:M	FD1:Y
1	request command		FD2:O	FD2:Y
MLF19	LE capability	[802.15.4e] 5.1.1.7, 5.1.11	0	O (#1)
MLF19.1	LE specific MAC sub-layer service specification	[802.15.4e] 6.4.3.7	MLF19:M	MLF19: Y
MLF19.2	Coordinated Sampled Listening (CSL) capability	[802.15.4e]5.1.11. 1	MLF19:O.1	N
MLF19.3	Receiver Initiated Transmission	[802.15.4e]5.1.11. 2	MLF19:O.1	N
	(RIT) capability			
MLF19.4	LE superframe	[802.15.4e] 5.1.1.7.1, 5.1.1.7.2, 5.1.1.7.3	MLF19:O.1	MLF19: Y
MLF19.5	LE-multipurpose Wake-up frame	[802.15.4e]5.2.2.8	MLF19.2:M	N
MLF19.6	LE, CSL Information Element	[802.15.4e]5.2.4.7	MLF19.2:M	N
MLF19.7	LE RIT Information Element	[802.15.4e]5.2.4.8	MLF19.3:O	N
MLF19.8	LE-commands	[802.15.4e]5.3.12	MLF19.3:M	N
MLF20	MAC Metrics PIB Attributes	[802.15.4e]6.4.3.9	0	N
MLF21	FastA commands	[802.15.4e]5.1.3.3	0	N
MLF23	Channel Hopping	[802.15.4e] Table 52f	0	N
HAN Working Group

MLF23.1	Hopping IEs	[802.15.4e]5.2.4.1 6,	MLF18:M	N
		5.2.4.17		

439

- 440 O.1: Optional but at least one of the features described in FD1 and FD2 is required to be 441 implemented
- 442 O.4: At least one of these features shall be supported.
- 443 **#1:** Implementation is optional.

- 445 **3.4.2.2.2.MAC frames**
- The MAC frame requirements are described in **Table 4.8-6**.

Table 4.8-6 MAC frames

		Reference	Status in star	ndard	Support
ltem number	Item description	section in standard	(M:Mandator	y, O:Option)	(Y:Yes, N:No,
		standard	Transmitter	Receiver	O:Option)
MF1	Beacon	[802.15.4] 5.2.2.1	FD1:M	М	Y
MF2	Data	[802.15.4] 5.2.2.2	М	М	Y
MF3	Acknowledgment	[802.15.4] 5.2.2.3	М	М	Y
MF4	Command	[802.15.4] 5.2.2.4	М	М	Y
MF4.1	Association request	[802.15.4] 5.2.2.4, 5.3.1	М	FD1:M	Y
MF4.2	Association response	[802.15.4] 5.2.2.4, 5.3.2	FD1:M	М	Y
MF4.3	Disassociation notification	[802.15.4] 5.2.2.4, 5.3.3	М	М	Y
MF4.4	Data request	[802.15.4] 5.2.2.4, 5.3.4	М	FD1:M	Y
MF4.5	PAN identifier conflict notification	[802.15.4] 5.2.2.4, 5.3.5	М	FD1:M	Y
MF4.6	Orphaned device notification	[802.15.4] 5.2.2.4, 5.3.6	М	FD1:M	Y
MF4.7	Beacon request	[802.15.4] 5.2.2.4, 5.3.7	FD1:M	FD1:M	Y
MF4.8	Coordinator realignment	[802.15.4] 5.2.2.4, 5.3.8	FD1:M	М	Y
MF4.9	GTS request	[802.15.4] 5.2.2.4, 5.3.9	MLF5:O	MLF5:O	N
MF5	4-octet FCS	[802.15.4g] 5.2.1.9	FD8:M	FD8:M	FD8:Y

450 3.4.3. Non-beacon mode profile

This sub-clause defines Wi-SUN 15.4 and 15.4e MAC profiles for ECHONET Lite, when non-beacon-enabled PAN is employed.

- 453 **3.4.3.1.** Functional device (FD) types
- The requirements for the functional device types are described in **Table 4.8-7**.
- 455
- 456

Table 4.8-7 Functional device types

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory, O:Option)	Support (Y:Yes, N:No, O:Option)
FD1	FFD	[802.15.4] 5.1	0.1	0.1
FD2	RFD	[802.15.4] 5.1	0.1	0.1
FD3	Support of 64 bit IEEE address	[802.15.4] 5.2.1.1.6	М	Y
FD4	Assignment of short network address (16 bit)	[802.15.4] 5.1.3.1	FD1:M	FD1:Y
FD5	Support of short network address (16 bit)	[802.15.4] 5.2.1.1.6	М	Y
FD8	SUN PHY device	[802.15.4g] 8.1	0.2	Y (#1)

457

- 458 O.1: Optional but at least one of the features described in FD1 and FD2 is required to be 459 implemented
- 460 O.2: At least one of these features is supported
- 461 **#1: MR-FSK is employed.**

462

464	
465	
466	
467	
468	
469	3.4.3.2. Major capabilities for the MAC sub-layer
470	The major capabilities for the MAC sub-layer are described in this sub-clause.
471	
472	3.4.3.2.1.MAC sub-layer functions
473	The MAC sub-layer function requirements are described in Table 4.8-8.

Table 4.8-8 MAC sub-layer functions

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory , O:Option)	Support (Y:Yes, N:No, O:Option)
MLF1	Transmission of data	[802.15.4] 6.3	М	Y
MLF1.1	Purge data	[802.15.4]	FD1:M	FD1:Y
		6.3.4, 6.3.5	FD2:O	FD2: N
MLF2	Reception of data	[802.15.4] 6.3	М	Y
MLF2.1	Promiscuous mode	[802.15.4]	FD1:M	FD1:Y
		5.1.6.5	FD2:O	FD2: N
MLF2.2	Control of PHY receiver	[802.15.4] 6.2.9	0	0
MLF2.3	Timestamp of incoming data	[802.15.4] 6.3.2	0	N
MLF3	Beacon management	[802.15.4] 5	М	Y
MLF3.1	Transmit beacons	[802.15.4] 5,	FD1:M	FD1:Y
		5.1.2.4	FD2:O	FD2: N
MLF3.2	Receive beacons	[802.15.4] 5, 6.2.4	М	Y
MLF4	Channel access mechanism	[802.15.4] 5, 5.1.1	М	Y
MLF5	Guaranteed time slot (GTS) management	[802.15.4] 5, 6.2.6, 5.3.9, 5.1.7	0	N
MLF5.1	GTS management (allocation)	[802.15.4] 5, 6.2.6, 5.3.9, 5.1.7	0	N

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory , O:Option)	Support (Y:Yes, N:No, O:Option)
MLF5.2	GTS management (request)	[802.15.4] 5, 6.2.6, 5.3.9, 5.1.7	0	N
MLF6	Frame validation	[802.15.4] 6.3.3, 5.2, 5.1.6.2	М	Y
MLF7	Acknowledged frame delivery	[802.15.4] 5, 6.3.3, 5.2.1.1.4, 5.1.6.4	М	Y
MLF8	Association and disassociation	[802.15.4] 5, 6.2.2, 6.2.3, 5.1.3	М	Y
MLF9	Security	[802.15.4] 7	М	Y
MLF9.1	Unsecured mode	[802.15.4] 7	М	Y
MLF9.2	Secured mode	[802.15.4] 7	0	Y
MLF9.2.1	Data encryption	[802.15.4] 7	0.4	Y
MLF 9.2.2	Frame integrity	[802.15.4] 7	0.4	Y
MLF10.1	ED	[802.15.4]	FD1:M	FD1:Y
		5.1.2.1, 5.1.2.1.1	FD2:O	FD2: N
MLF10.2	Active scanning	[802.15.4]	FD1:M	FD1:Y
		5.1.2.1.2	FD2:O	FD2: Y
MLF10.3	Passive scanning	[802.15.4] 5.1.2.1.2	М	Y
MLF10.4	Orphan scanning	[802.15.4] 5.1.2.1, 5.1.2.1.3	М	Y

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory , O:Option)	Support (Y:Yes, N:No, O:Option)
MLF11	Control/define/determine/declar e superframe structure	[802.15.4] 5.1.1.1	FD1:O	N
MLF12	Follow/use superframe structure	[802.15.4] 5.1.1.1	0	N
MLF13	Store one transaction	[802.15.4] 5.1.5	FD1:M	FD1:Y
MLF14	Ranging	[802.15.4] 5.1.8	RF4:O	N
MLF14.1	DPS	[802.15.4] 5.1.8.3,6.2.1 5	0	N
MLF15(4g)	MPM for all coordinators when operating at more than 1% duty cycle	[802.15.4g] 5.1.13	М	Y
MLF15	TSCH Capability	[802.15.4e] Table 8a	0	N
MLF16	LL Capability	[802.15.4e] Table 8b	0	N
MLF17	DSME Capability	[802.15.4e] 6.2, Table 8c	0	N
MLF18	EBR capability	[802.15.4e] 5.3.12	0	Y
MLF18.1	EBR commands	[802.15.4e] 5.3.7	MLF18:O	Y
MLF18.1.1	EBR Enhanced Beacon request command	[802.15.4e] 5.3.7.2	FD1:M FD2:O	FD1:Y FD2: Y

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory , O:Option)	Support (Y:Yes, N:No, O:Option)
MLF19	LE capability	[802.15.4e] 5.1.1.7, 5.1.11	0	O (#1)
MLF19.1	LE specific MAC sub-layer service specification	[802.15.4e] 6.4.3.7	MLF19:M	MLF19:Y
MLF19.2	Coordinated Sampled Listening (CSL) capability	[802.15.4e] 5.1.11.1	MLF19:O.1	MLF19:O. 1
MLF19.3	Receiver Initiated Transmission (RIT) capability	[802.15.4e] 5.1.11.2	MLF19:O.1	MLF19:O. 1
MLF19.4	LE superframe	[802.15.4e] 5.1.1.7.1, 5.1.1.7.2, 5.1.1.7.3	MLF19:O.1	N
MLF19.5	LE-multipurpose Wake-up frame	[802.15.4e] 5.2.2.8	MLF19.2:M	MLF19.2:Y
MLF19.6	LE, CSL Information Element	[802.15.4e] 5.2.4.7	MLF19.2:M	MLF19.2:Y
MLF19.7	LE RIT Information Element	[802.15.4e] 5.2.4.8	MLF19.3:O	MLF19.3: O
MLF19.8	LE-commands	[802.15.4e] 5.3.12	MLF19.3:M	MLF19.3:Y
MLF20	MAC Metrics PIB Attributes	[802.15.4e] 6.4.3.9	0	N
MLF21	FastA commands	[802.15.4e] 5.1.3.3	0	N
MLF23	Channel Hopping	[802.15.4e] Table 52f	0	N

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory , O:Option)	Support (Y:Yes, N:No, O:Option)
MLF23.1	Hopping IEs	[802.15.4e] 5.2.4.16, 5.2.4.17	MLF18:M	N

- 476 O.1: Optional but at least one of the features described in FD1 and FD2 is required to be
 477 implemented
- 478 O.4: At least one of these features shall be supported.
- 479 **#1:** Implementation is optional.
- 480 481

- 482 **3.4.3.2.2.MAC frames**
- The MAC frame requirements are described in **Table 4.8-9**.

Table 4.8-9 MAC frames

		Deference	Status in	standard	Support
ltem number	Item description	Reference section in	(M:Mandator	y, O:Option)	(Y:Yes, N:No,
		standard	Transmitter	Receiver	O:Option)
MF1	Beacon	[802.15.4] 5.2.2.1	FD1:M	М	Y
MF2	Data	[802.15.4] 5.2.2.2	М	М	Y
MF3	Acknowledgment	[802.15.4] 5.2.2.3	М	М	Y
MF4	Command	[802.15.4] 5.2.2.4	М	М	Y
MF4.1	Association request	[802.15.4] 5.2.2.4, 5.3.1	М	FD1:M	Y
MF4.2	Association response	[802.15.4] 5.2.2.4, 5.3.2	FD1:M	М	Y
MF4.3	Disassociation notification	[802.15.4] 5.2.2.4, 5.3.3	М	М	Y
MF4.4	Data request	[802.15.4] 5.2.2.4, 5.3.4	М	FD1:M	Y
MF4.5	PAN identifier conflict notification	[802.15.4] 5.2.2.4, 5.3.5	М	FD1:M	Y
MF4.6	Orphaned device notification	[802.15.4] 5.2.2.4, 5.3.6	М	FD1:M	Y
MF4.7	Beacon request	[802.15.4] 5.2.2.4, 5.3.7	FD1:M	FD1:M	Y
MF4.8	Coordinator realignment	[802.15.4] 5.2.2.4, 5.3.8	FD1:M	М	Y
MF4.9	GTS request	[802.15.4] 5.2.2.4, 5.3.9	MLF5:O	MLF5:O	N
MF5	4-octet FCS	[802.15.4g] 5.2.1.9	FD8:M	FD8:M	Y

3.5. Wi-SUN ECHONET Lite interface part

488 **3.5.1.** Overview

Wi-SUN ECHONET Lite interface shall be composed of transport layer, network Layer, and adaptation layer. The data from transport/network layer is converted to PHY and MAC layer data via adaptation layer. On the other hand, the data from PHY/MAC layer is converted to network/transport layer data via adaptation layer. As transport layer protocol TCP or UDP may be used.

494

495 **3.5.2. Requirement**

- 496 (1) Wi-SUN ECHONET Lite interface shall provide Network Interface (NIC). MAC address
 497 in the NIC shall be one that can be extracted from MAC layer.
- 498 (2) Wi-SUN ECHONET Lite interface shall know address configuration used in MAC layer
 499 in advance.
- (3) Wi-SUN ECHONET Lite interface shall analyze IPv6 header by taking address
 configuration in MAC layer and convert the destination address in IPv6 header to the
 destination address used in MAC layer
- (4) Wi-SUN ECHONET Lite interface shall analyze IPv6 header. When the destination
 address is multicast address, the interface shall instruct MAC layer to do broadcast
 transmission.
- (5) Wi-SUN ECHONET Lite interface shall use neighbor discovery (ND) function based on
 either IPv6 or 6LowPAN. The ND function is chosen not by every node but for every
 system.
- 509

510 **3.5.3.** Adaptation layer

511 The adaptation layer in the Wi-SUN ECHONET Lite Interface shall perform compression of 512 IPv6 headers according to RFC6282 [6LPHC] and packet fragmentation according to

513 RFC4944 [6LOWPAN]. The specific configurations are given in Table 4.8-10.

514

Table 4.8-10 Adaption layer of 6LoWPAN

Item number	Item description	Reference section in standard	Support (Y:Yes, N:No, O:Option)
6LP1.1	Addressing Modes (EUI-64)	[6LOWPAN] 3	Y

Wi-SUN Profile for HAN

 $52 \ {\rm of} \ 206$

6LP1.2	Addressing Modes (short address)	[6LOWPAN] 3	Ν
6LP2	Frame Format	[6LOWPAN] 5	O (#1)
6LP3	Stateless Address	[6LOWPAN] 6	Y
	Autoconfiguration		
6LP4	IPv6 Link Local Address	[6LOWPAN] 7	Y
6LP5	Unicast Address Mapping	[6LOWPAN] 8	Y (#2)
6LP6	Multicast Address Mapping	[6LOWPAN] 9	Ν
6LP7	Encoding of IPv6 Header Fields	[6LOWPAN] 10.1	N (#3)
6LP8	Encoding of UDP Header Fields	[6LOWPAN] 10.2	N (#3)
6LP9	Non-Compressed Fields	[6LOWPAN] 10.3	Y
6LP10	Frame Delivery in a Link-Layer	[6LOWPAN] 11	Ν
	Mesh		

- (#1) Header Type = LOWPAN_HC1 shall not be used and Header Type = LOWPAN_BC0
 and [6LOWPAN] 5.2 are option
- 518 (#2) 16bit address (short address) shall not be used
- (#3) For header compression, IPHC[6LPHC] shall be used and HC1 and HC2 in
- 520 [6LOWPAN] shall not be used.
- 521

522 **3.5.3.1.** Fragmentation

- 523 The 6LoWPAN fragmentation requirements shall be implemented in Wi-SUN ECHONET 524 Lite interface are described in Table 4.8-11.
- 525

Table 4.8-11 Fragmentations of 6LoWPAN

			Reference	Support
	Item number	Item description	section in	(Y:Yes, N:No,
			standard	O:Option)
Ī	6LPF1	Fragmentation type and Header	[6LOWPAN]	Y
			5.3	

526

527 **3.5.3.2. Header compression**

528 The 6LoWPAN Header compression requirements are described in Table 4.8-12.

529 Basically every node shall support header compression described in [6LPHC] but the

530 header compression used context ID including compression of stateful multicast address

shall not be supported. Moreover, compression for IPv6 extension header and UDP header

532 by LOWPAN_NHC shall not be supported. The node that has capability to receive IPv6 533 packet shall receive non-compressed IPv6 packet, IPv6 packet compressed by the 534 conditions in this section, and IPv6 packet partially compressed by [6LPHC].

- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542

5	4	3

Table 4.8-12: 6LoWPAN Header compression

Item number	Item description	Reference section in standard	Support (Y:Yes, N:No, O:Option)
6HC1.1	LOWPAN_IPHC (Base Format)	[6LPHC] 3.1.1	Ý
6HC1.2	Context Identifier Extension	[6LPHC] 3.1.2	Ν
6HC2.1	Stateless Multicast Address Compression	[6LPHC] 3.2.3	Y
6HC2.2	Stateful Multicast Address Compression	[6LPHC] 3.2.4	Ν
6HC4	LOWPAN_NHC (IPv6 Extension Header Compression)	[6LPHC] 4.2	N
6HC5	LOWPAN_NHC (UDP Header Compression)	[6LPHC] 4.3	Ν

544

Since Wi-SUN ECHONET Lite interface shall not support context ID and shall support link
 local address based on EUI-64 address for IPv6 packet, LOWPAN_IPHC encoding header
 [6LPHC] in IPv6 packet shall be composed in Figure 4.8-3.

HAN Working Group

559

557 558

560

Table 4.8-13 Values to be set into LOWPAN_IPHC for multicast packet

	Fields									
Packet Type	TF	NH	HLIM	CID	SAC	SAM	Μ	DAC	DAM	Remarks
	Bit 3-4	5	6-7	8	9	10-11	12	13	14-15	
Solicited- node multicast for DAD	0b11	0b0	0b11	0	1 *1	0b00*1	. 1 ^{*2*3} 0 ^{*2*3}	0*2*3	0b01*2	Destination address takes the form FF02::1:FFXX:XXXX,
Solicited- node multicast for ND					0	0b11				where "XX:XXXX" is the low-order 24 bits of the target address.

	Any other type of multicast packets									0b11 ^{∗3}	Destination address takes the form FF02::00XX, where XX is 0x01 or 0x02 to be specified in the in-line header.
561 562											for DAD, as specified in
562 563	4.3 of [ND]. It is converted to SAC=1 and SAM=00 according to the method specified in 3.1.1 of [6LPHC]										
564 565 566	*2: The solicited-node multicast address is set to the destination address of NS, as specified in 4.3 of [ND]. It is converted to M=1, DAC=0, and DAM=01 according to the method specified in 3.1.1 of [6LPHC].										
567											f other multicast packet
568 569	which is not specified in 3					:0 M=	:1, DA0	J=0,	and I	JAM=11 acco	rding to the method
570			-		-						
571	3.5.3.3. Neig	hbor	disc	overy							
572										-	D] or RFC6775 [6LND].
573 574	6LoWPAN Neighbor discovery requirements in RFC6775 are described in Table 4.8-14. The requirements of routing function to realize multihop operation are out of scope of this										
575	document.										
576											
577											
578											
579											
580											
581											
582				Tabl	e 4.8	8-14 6	6LoWF	PAN	Neig	hbor discove	ry

Item number	Item description	Reference section in standard	Support (Y:Yes, N:No,
6ND1	DHCPv6 Address Assignment for 6LBR, 6LR and Host	[6LPND] 3.2	O:Option) O
6ND2	DHCPv6 Prefix Delegation for 6LBR	[6LPND] 3.2, 7.1	0
6ND3	DHCPv6 Prefix Delegation for 6LR and Host	[6LPND] 3.2, 7.1	0
6ND4	Static IPv6 address configuration on 6LBR	[6LPND] 5.4.1	0
6ND5	Static IPv6 address configuration on 6LR and Host	[6LPND] 5.4.1	0
6ND6	EUI-64 based IPv6 Address Generation	[6LPND] 5.4.1	Y
6ND7	802.15.4 16-bit short address	[6LPND] 1.3	0
6ND8	802.15.4 64-bit extended address	[6LPND] 1.3	Y
6ND9	Duplicate Address Detect	[6LPND] 4.4	0
6ND10	Dunlicate Address messages		0
6ND11	Support Source Link-Layer Address Option (SLLAO)	[6LPND] 4.1, 5.3	Y
6ND12	Support Address Registration Option (ARO)	[6LPND] 5.5	Y
6ND13	Support Authoritative Border Router Option (ABRO)	[6LPND] 3.3, 3.4, 4.3, 6.3	0
6ND14	Support Prefix Information Option (PIO)	[6LPND] 3.3, 5.4	0
6ND15	Support 6LoWPAN Context Option (6CO)	[6LPND] 4.2	0
6ND16	Multihop Prefix and Context Distribution	[6LPND] 8.1	0
6ND17	Multihop DAD	[6LPND] 8.2	0
6ND18	Support Router Discovery	[6LPND]	Y
6ND19	Support RA based Address Configuration on 6LR and Host	[6LPND]5.4.1	0
6ND20	Support Neighbor Cache Management	[6LPND] 3.5	Y
6ND21	Support Address Registration	[6LPND] 3.2	Y
6ND22	Support Address unregistration	[6LPND] 3.2	Y

6ND23	Support Neighbor Unreachable Detection	[6LPND] 5.5	Y
6ND24	Send Multicast NS	[6LPND] 6.5.5	0
6ND25	Send Unicast NS	[6LPND]5.5	Y

3.5.4. Network layer

Wi-SUN ECHONET Lite interface shall support IPv6 protocol [IPv6] in Table 4.8-15. Hop-by-585 hop options extension header, Routing extension header, Fragment extension header, 586 Destination Options extension header, AH extension header, and ESP extension header are 587 optional. Wi-SUN ECHONET Lite interface also shall support ICMPv6 protocol [ICMPv6] in 588 Table 4.8-16. Wi-SUN ECHONET Lite interface shall support Echo Request Message 589 (type=128) and Echo Reply Message (type=129), Destination Unreachable Message 590 (type=1), Time Exceeded Message (type=3) and Parameter Problem Message (type=4). 591 For Packet Too Big Message (type=2), Wi-SUN ECHONET Lite interface may not support 592 transmission function but may support receipt function. 593

594

595

Table 4.8-15 Network Layer: IPv6

		Reference	Support		
Item number	Item description	section in	(Y:Yes, N:No,		
		standard	O:Option)		
IP1	Header Format	[IPv6] 3	Y		
IP1.1	Extension Headers	-	Y		
IP1.2	Extension Header Order	[IPv6]4.1	Y		
IP1.3	Options	[IPv6] 4.2	Y		
IP1.4	Hop-by-Hop Options Header	[IPv6] 4.3	0		
IP1.5	Routing Header	[IPv6]4.4	0		
IP1.6	Fragment Header	[IPv6] 4.5	0		
IP1.7	Destination Options Header	[IPv6] 4.6	0		
IP1.8	No Next Header	[IPv6]4.7	Y		
IP1.9	AH Header	[AH]	0		
IP1.10	ESP Header	[ESP]	0		
IP2	Deprecation of Type 0 Routing	[IPv6-RH]	Y		
	Headers				
IP3	Path MTU Discovery	[IPv6] 5	Y		
IP4	Flow Labels	[IPv6] 6	Y		
IP5	Traffic Classes	[IPv6] 7	Y		

Table 4.8-16 Network Layer: ICMPv6

		-	
		Reference	Support
Item number	Item description	section in	(Y:Yes, N:No,
		standard	O:Option)
ICMP1	Message Format	[ICMP6] 2.1	Y
ICMP2	Message Source Address	[ICMP6] 2.2	Y
	Determination		
ICMP3	Message Checksum Calculation	[ICMP6] 2.3	Y
ICMP4	Message Processing Rules	[ICMP6] 2.4	Y
ICMP5	Destination Unreachable	[ICMP6] 3.1	Y
	Message		
ICMP6	Packet Too Big Message	[ICMP6] 3.2	Y
ICMP7	Time Exceeded Message	[ICMP6] 3.3	Y
ICMP8	Parameter Problem Message	[ICMP6] 3.4	Y
ICMP9	Echo Request Message	[ICMP6] 4.1	Y
ICMP10	Echo Reply Message	[ICMP6] 4.2	Y

598

3.5.4.1. IP addressing

Wi-SUN ECHONET Lite interface shall support IPv6 addressing [IP6ADDR] and IPv6 Stateless Address Autoconfiguration [SLAAC] defined in Table 4.8-17. Wi-SUN ECHONET Lite interface shall support link local address based on EUI-64. In the case, according to description in [6LOWPAN] and [SLAAC], well known link-local prefix FE80::0/64 shall be used as prefix and interface identifier shall be generated from EUI-64 address. IPv6 linklocal address, global address, and unique local address derived the short address defined in [802.15.4] shall not be used.

607

Table 4.8-17 IP Addressing

		Reference	Support
Item number	Item description	section in	(Y:Yes, N:No,
		standard	O:Option)
IPAD1	IPv6 Addressing	[IP6ADDR]	Y (*1)
IPAD1.1	Global Unicast Address	[IP6ADDR]	Ν
		2.5.4	
IPAD1.2	Link Local Unicast Address	[IP6ADDR]	Y (*2)
		2.5.6	
IPAD1.3	Unique Local Unicast Address	[ULA]	Ν
IPAD1.4	Anycast Address	[IP6ADDR] 2.6	Ν
IPAD1.5	Multicast Address	[IP6ADDR] 2.7	Y (*3)
IPAD1.6	Prefix Length		/64
IPAD2	Stateless Address	[SLAAC]	Y
	Autoconfiguration		
IPAD2.1	Creation of Link Local Address	[SLAAC] 5.3	Y
IPAD2.2	Creation of Global Addresses	[SLAAC] 5.5	Ν

609 (*1) Some of the functions may not be used.

610 (*2) EUI-64 address based Link Local Address shall be supported.

611 (*3) ff02::1 shall be used for transmission.

612

614 **3.5.4.2. Neighbor discovery**

Wi-SUN ECHONET Lite interface shall support either RFC 4861[ND] or RFC6775 [6LND].
 IPv6 Neighbor discovery requirements in RFC4861 are described in Table 4.8-18. Wi-SUN
 ECHONET Lite interface shall support two functions: Address Resolution and Duplicate
 Address Detection and shall support two messages: Neighbor Solicitation message: Type =
 135 and Neighbor Advertisement message: Type = 136.

- 620
- 621

Table 4.8-18 IPv6 Neighbor discovery

		Reference	Support	
Item number	Item description	section in	(Y:Yes, N:No,	
		standard	O:Option)	
ND1	Router and Prefix Discovery	[ND]6	Ν	
ND2	Address Resolution	[ND] 7.2	Y	
ND3	Neighbor Unreachability	[ND] 7.3	Ν	
	Detection			
ND4	Duplicate Address Detection	[SLAAC] 5.4	0	
ND5	Redirect Function	[ND] 8	N	
ND6	Router Solicitation Message	[ND]4.1	Ν	
ND7	Router Advertisement Message	[ND] 4.2	Ν	
ND8	Neighbor Solicitation Message	[ND] 4.3	Y(*1)	
ND9	Neighbor Advertisement	[ND] 4.4	Y(*2)	
	Message			
ND10 Redirect Message		[ND] 4.5	Ν	
ND11	Source/Target Link-layer	[ND] 4.6.1	Y	
Address Option				
ND12	Prefix Information Option	[ND] 4.6.2	Ν	
ND13	Redirected Header Option	[ND] 4.6.3	Ν	
ND14 MTU Option		[ND] 4.6.4	Ν	

*1: The Source Link-Layer Address option contains an EUI-64 format address.

- 624
- 625 **3.5.4.3. Multicast**

In transmitting multicast packet for ECHONET Lite, ff02::1 is set as destination address based on [EL].

⁶²³ *2: The Target Link-Layer Address option contains an EUI-64 format address.

629 3.5.5. Transport layer

630 UDP [UDP] shall be implemented and TCP [TCP], may be implemented. The destination 631 port number of UDP and TCP frames and operation procedure for TCP shall follow the 632 specification in [EL].

- 633
- 3.5.6. Application layer
- Wi-SUN ECHONET Lite interface shall support ECHONET Lite [EL] as application layer.
 The node implemented specifications in this document shall support mandatory function
 defined in [EL].

639	3.5.7.	Security	configuration
-----	--------	----------	---------------

- 640 **3.5.7.1. Overview**
- ⁶⁴¹ This clause describes a security mechanism for single-hop network.
- 642 PANA [PANA] shall be used as the EAP [EAP] transport for authentication between the 643 coordinator and a host.
- 644 EAP-PSK [EAP-PSK] shall be used as the EAP method carried in PANA messages.
- ⁶⁴⁵ The coordinator and the host share a link key after successful authentication. The link key ⁶⁴⁶ shall be used for AES-128-CCM* ciphering described in [802.15.4] MAC layer security.
- 647
- 648 **3.5.7.2.** Authentication
- The coordinator shall be PANA Authentication Agent (PAA) and the host shall be PANA Client (PaC).
- 651
- 652 **3.5.7.2.1.PANA**
- PANA messages shall be sent using IPv6 UDP.
- PaC knows the IP address of PAA before starting PANA session negotiation.
- The UDP destination port number shall be set to 716.
- The PANA session shall be initiated by the PaC.
- Compliant nodes shall support PRF_HMAC_SHA2_256 (AVP Value=5).
- Compliant nodes shall support AUTH_HMAC_SHA2_256_128 (AVP Value=12).
- An EAP-Response should be piggybacked on the PANA-Auth-Answer message.
- The length of the nonce value in the Nonce AVP shall be 16 octets.
- The lifetime value in the Session-Lifetime AVP shall not be set less than 60 seconds.
- 662
- 663 **3.5.7.2.2.EAP**
- EAP-PSK shall be used.
- The length of the pre-shared key is 16 octets.

- The length of Master Session Key (MSK) and Extended Master Session Key (EMSK) is 666 64 octets. 667 EAP Server ID (ID_S) and peer's ID (ID_P) shall use Network Address Identifier (NAI). 668 The length of ID_S and ID_P shall not be greater than 63 octets. • 669 The retransmission in EAP layer shall not be used. • 670 671 3.5.7.3. Key generation 672 The lifetime of the link key which shared with the peer after PANA session establishment 673 shall be the same as the PANA session lifetime. Both PAA and PaC shall use the newest 674 derived key after PANA session renewal (PANA Re-Authentication phase or Authentication 675 and Authorization phase). If a PANA session is terminated before the PANA session lifetime 676 expiration, any keys derived in this session shall be revoked. 677 678 3.5.7.3.1.PANA 679 The following algorithms shall be used for PANA message authentication. 680
- 681

Table 4.8-19 PANA algorithm types (defined in [HMAC-SHA256])

Algorithm	Туре	Value
PRF	PRF_HMAC_SHA2_256	5
PANA_AUTH_HASH	AUTH_HMAC_SHA2_256_128	12

- 682
- 683 **3.5.7.3.2.EAP-PSK**
- 684 See [EAP-PSK].
- 685
- 686 3.5.7.3.3.MAC layer security (link key)
- The link key (LK) is derived from the EMSK after successful PANA negotiation.
- The master secret Usage-Specific Root Key (USRK) is generated by Key Derivation
 Function (KDF). The KDF is described in [USRK] and then the LK is derived from the
 USRK.

USRK = KDF(EMSK, "String(*1)" | "\0" | optional data | length)

- optional data = NULL(0x00)
- length = 64

```
LK = KDF(USRK, "String(*2)" | "\0" | optional data | length)
```

- optional data = EAP ID_P | EAP ID_S | IEEE802.15.4 Key Index
- length = 16

*1,*2: These strings are defined in each recommended usage sections.

691

The KDF algorithm is the same as the PANA PRF (PRF_HMAC_SHA2_256). The length value in the KDF is unsigned 8-bit integer. The IEEE 802.15.4 Key Index is the lower 8-bit value of the MSK Identifier in Key-Id AVP.

- 695 PAA shall not assign consecutively MSK Identifiers that has same lower 8-bit value to the 696 same PaC.
- As the result of successful PANA authentication, a LK is shared between the PAA and thePaC.
- 699
- 3.5.7.4. Encryption and Integrity check in MAC layer
- ⁷⁰¹ MAC data frame shall be ciphered by the LK described in [802.15.4].
- Compliant nodes shall use the newest LK in every PANA session renewal.
- The Frame Counter value in the MAC frame shall be set to zero in every renewal of LK.
- The host shall renegotiate new PANA session before the incoming/outgoing Frame Counter overflow.
- ENC-MIC-32 (security level 5) shall be used for MAC layer security.
- Both coordinator and host shall discard invalid MAC frame.
- Key identifier mode is 0x01, Key Source is not used (1 octet Key-Index).

All PANA messages (UDP destination port 716) and IPv6 Neighbor Solicitation (NS)
 (ICMPv6 Type 135 Code 0)/Neighbor Advertisement (NA) (ICMPv6 Type 136 code 0)
 messages shall not be applied MAC layer security (do not add MAC Auxiliary Security
 header).

- 713
- 3.5.7.5. Replay protection

All ciphered MAC frames are protected from replay attacks by checking Frame Counter value in MAC Auxiliary Security header.

717

3.5.8. Frame format

A sample procedure of frame formatting in the case of UDP communication is shown in
 Figure 4.8-5 – Figure 4.8-8.

HAN Working Group

728

729

3.6. Recommended usage for single-hop home network

732 **3.6.1.Overview**

This clause clarifies the recommended usage in constructing single-hop network for
 ECHONET Lite over IPv6. Note that this profile does not exclude other usages.

Compliant nodes to this clause constructs single hop network where a coordinator is
 centered. And, with assuming a gateway connection provided by application layer as the
 connection measure to the outer networks, a closed IP network is assumed inside this
 profile. On those assumptions, the indoor network construction based on ECHONET Lite
 provides expandability as well as feasibility.

740

741 **3.6.2.PHY part**

Required specifications in terms of IEEE 802.15.4/4e/4g standards in order to realize this
 usage are shown in Table 4.8-20 and Table 4.8-21.

744 745

Table 4.8-20 Device/PHY layer specifications in order to realize the usage

Item number *1	Recommend (Y:Yes, N:No, O:Option)	Item number *2	Recommend (Y:Yes, N:No, O:Option)	Item number *3	Recommend (Y:Yes, N:No, O:Option)	ltem number *3	Recommend (Y:Yes, N:No, O:Option)
FD1	O.1	PLF1	Y	RF12		RF13.4	Supporting 100kbps only OR both of 100kbps and 50kbps
FD2	O.1	PLF2	Y	RF12.1	Y	RF13.5	N
FD3	Y	PLF3	Y	RF12.2	N	RF14	—
FD4	N	PLF4	Υ	RF12.3	Ν	RF14.1	Ν
FD5	N	PLF4.1	Y	RF12.4	N	RF14.2	N
FD8	Y	PLF4.2	Ν	RF12.5	Ν	RF14.3	Y
		PLF4.3	N	RF12.6	Υ	RF14.4	Ν

HAN Working Group

PLP1	PSDU size RF13 up to 255 octets	
*1. Corresponding to item pu		Functional device types

- 746
- 747
- 748 to item number in Table 4.8-2 PLF and PLP capabilities PLF and PLF z. Corresponding capabilities 749
- *3: Corresponding to item number in Table 4.8-3 RF capabilities 750
- 751
- 752
- 753
- 754

755

Table 4.8-21: Additional PHY layer specifications in order to realize the usage

Parameters	Recommend	Remarks
Modulation scheme	GFSK	
Data rate	100kbps or 50kbps	
Transmission power	20mW or less	
Frequency channel	Channels of No. 33 to 60 defined by ARIB with bundling of an odd channel and the next even channel, or channels of No. 33 to 61 without bundling.	Channels of No. 33 to 38 are also utilized by systems employing 250 mW transmission power.
Frequency channel width	400kHz (with 2 channel bundling), or 200kHz	
Transmission preamble length	1200us - 4000us	
Preamble length assumed at receiver	1200us	

756

3.6.3.MAC part 757

3.6.3.1. MAC layer specifications 758

Required specifications in terms of IEEE 802.15.4/4e/4g standards in order to realize the 759 760 recommended usage by ECHONET Lite are shown in Table 4.8-22. Non-beacon enabled configurations are selected by MAC layer when these specifications are deployed. 761

Table 4.8-22 MAC layer specifications in order to realize the usage

762

763

764

Recommend Recommend Item Item Recommend Recommend (Y:Yes, (Y:Yes, Item number Item number (Y:Yes, N:No, (Y:Yes, N:No, number number N:No, N:No, *1 *2 *1 *1 O:Option) O:Option) O:Option) O:Option) Y Y MLF1 Y MLF7 MLF15 Ν MF1 Y MLF1.1 O*3*5 MLF8 O*6 MLF16 Ν MF2 Ν MLF2 Y MLF9 Y MLF17 MF3 Y Y Y Y MLF2.1 Ν MLF9.1 MLF18 MF4 Y Y MLF2.2 0*4 **MLF9.2** MLF18.1 MF4.1 O*6 MLF2.3 Ν MLF9.2.1 Y MLF18.1.1 Y MF4.2 0*6 MLF3 Y MLF9.2.2 Y MLF19 N*8 MF4.3 O*6 Y*5 MLF3.1 Y*5 MLF10.1 MLF19.1 N*8 MF4.4 O*3 MLF3.2 Υ MLF10.2 Y MLF19.2 N*8 MF4.5 Ν MLF4 Y MLF10.3 Ν Ν MF4.6 O*3 MLF19.3 MLF5 Ν MLF10.4 O*3 MLF19.4 Ν MF4.7 Y*9 MLF5.1 Ν MLF11 Ν MLF19.5 N*8 MF4.8 O*3 MLF5.2 Ν MLF12 Ν MLF19.6 N*8 MF4.9 Ν MLF6 Y MLF13 O*3 MLF19.7 Ν MF5 Y*10 MLF15(4g) O*7 MLF19.8 Ν Ν MLF20 MLF21 Ν Ν MLF23 MLF23.1 Ν

765

*1: Corresponding to item number in Table 4.8-8 MAC sub-layer functions

766 *2: Corresponding to item number in Table 4.8-9 MAC frames

*3: Not mandated for the network constructed only by devices with permanent power supply.

768 *4: May be employed as necessary.

769 *5: Not employed by FD2.

*6: Not mandated when done by upper layer.

*7: Employed when 50kbps and 100kbps modes coexist.

*8: Not employed since single-hop communications are assumed.

- *9: May be employed by FD2 (not clarified in references).
- *10: 2-octet FCS is employed when PSDU size is no more than 255 octets
- 775

3.6.3.2. MAC frame format

This section describes frame format, based on [802.15.4] 5.2 MAC frame formats.

- Enhanced Beacon and Enhanced Beacon Request are not allowed to be encrypted. Any
 frame shall not be encrypted if it contains IEs.
- Header IE shall not be used and Payload IE follows MHR without Header IE list terminator
 when IEs List Present field in the frame control is one.
- 782
- Note that this omission of Header IE list terminator may be incompatible with [802.15.4e].
- 784
- 785 **3.6.3.2.1.Data frame format**
- Figure 4.8-9 shows the DATA frame format used in this specification. (Clarifies the usage in this specification, based on [802.15.4e] 5.2.2.2 Data frame format)

255 octets or less							
Octets:2	1	2	2/8	8	0/6	Variable	2
Frame Control	Sequence Number	Destination PAN Identifier	Destination Address	Source Address	Auxiliary Security Header	Frame Payload	FCS
		Add	ressing fields				
MHR	MHR				·	MAC Payload	MFR

789

Figure 4.8-9 DATA frame format

- 790
- 791 (1) Frame Control field
- The fields of the Frame Control field are shown in Table 4.8-23.
- 793

Table 4.8-23 Frame Control (DATA frame)

bit	fields	remark
2-0	Frame Type	"001", meaning DATA frame
3	Security Enable	"0" if the security is disabled, "1" if security is enabled.
4	Frame Pending	"0", do not use

	5	AR (Ack Request)	"0" in case ACK is not requested (broadcast), "1" in case ACK is requested (unicast)				
	6	PAN ID Compression	"0", based on [802.15.4e] Table 2a				
	7	Reserved	as a rule set to "0", but don't care				
	8	Sequence Number Suppression	"0", do not suppress Sequence Number field				
	9	IE List Present	"0", do not use IEs.				
	11-	Destination Addressing Mode	"11", for 64 bit extended address				
	10		"10", for 16-bit broadcast address				
	13- 12	Frame Version	"10", for extended format*1,*2				
	15- 14	Source Addressing Mode	"11", for 64 bit extended address				
794 795		*1:This field is always set to 0b10 to indicate a frame non-compatible with 802.15.4- 2003/2006, because enhanced acknowledgment frame is assumed.					
796	*2:ECHONET Lite profile assumes the following specifications:						
797 798 799	a) ECHONET Lite devices shall be capable of receiving a beacon, data, acknowledgment and command frames (frames with frame type field set to 0,1,2 or 3) with the frame version field set to 10b and process the frame according to 802.15.4;						
800 801 802	and cor	b) ECHONET Lite devices may be capable of receiving a beacon, data, acknowledgment and command frame with frame version field set to 00 or 01, and will process the frame according to 802.15.4;					
803 804	c) ECHONET Lite devices shall, when generating beacon, data, acknowledgment and command frame, set the frame version field to 10b" to this table.						
805							
806	(2) Sequence Number field						
807	See [802.15.4] 5.2.1.2 Sequence Number field.						
808							
809	(3) Add	(3) Addressing field					
810 811	Source address is 64-bit MAC address and destination address is either 16-bit broadcast address (0xFFFF) or 64-bit MAC address. These address fields are transmitted least significant octet first and each octet shall be transmitted least significant bit (LSB) first						

significant octet first and each octet shall be transmitted least significant bit (LSB) first.
The source PAN Identifier is not included in the address field. PAN Identifier is transmitted from LSBit, treated as 16-bit numerical number.

815

816 (4) Auxiliary Security Header field

Table 4.8-24 shows the fields of the Auxiliary Security Header that is used to encrypt the frame.

819

Table 4.8-24 Auxiliary Security Header

0	ctet	bit	fields		remark
1		b2-b0	Security Control	Security Level	"101", for ENC-MIC-32
		b4-b3	Control	Key Identifier Mode	"01" for 1 octet Key Identifier
		b7-b5		Reserved	-
4	•	-	Frame Counter		
1		-	Key Identifie	r	

820

821 **3.6.3.2.2.** ACK frame format

Figure 4.8-10 shows the ACK frame format used in this specification. (clarifies the usage in this specification, based on [802.15.4e] 5.2.2.3 Acknowledgment frame format)

Octets:2	1	2	8	2
Frame Control	Sequence Number	Destination PAN Identifier	Destination Address	FCS
		Addressing	g fields	
MHR				MFR

824

Figure 4.8-10 ACK frame format

- 825 826
- 827 (1) Frame Control field
- Table 4.8-25 shows the fields of the Frame Control field.

Table 4.8-25 Frame Control (ACK frame)

bit	fields	remark
2-0	Frame Type	"010", meaning ACK frame
3	Security Enable	"0", security is disabled
4	Frame Pending	"0", do not use
5	AR(Ack Request)	set to "0"
6	PAN ID Compression	"0", based on [802.15.4e] Table 2a
7	Reserved	set to "0"
8	Sequence Number Suppression	"0", do not suppress Sequence Number field
9	IE List Present	"0" , do not use IEs
11- 10	Destination Addressing Mode	"11", for 64 bit extended address
13- 12	Frame Version	"10", for extended format
15- 14	Source Addressing Mode	"00", do not use Source Address

830

829

831 (2) Sequence Number field

Refer to [802.15.4] 5.2.1.2 Sequence Number field. Ack frame uses the same value of the received Data frame in response.

834

(3) Addressing field

⁸³⁶ Destination Address is set to the Source Address of the received frame to respond. Refer to ⁸³⁷ section 3.6.3.2.1 DATA frame format (3) Addressing field of this specification.

838

3.6.3.2.3.Enhanced Beacon frame format

Figure 4.8-11 shows the Enhanced Beacon frame format used in this specification. (clarifies the usage in this specification, based on [802.15.4e] 5.2.2.1 Beacon frame format).

Octets:2	1	2	8	8	Variable	2
Frame Control	Sequence Number	Destination PAN Identifier	Destination Address	Source Address	Payload IE	FCS
		Ad	dressing fields	6		
MHR					MAC Payload	MFR

843 844

Figure 4.8-11 Enhanced Beacon frame format

- 845 (1) Frame Control field
- Table 4.8-26 shows the fields of the Frame Control field.
- 847

Table 4.8-26 Frame Control (Enhanced Beacon frame)

bit	fields	remark
2-0	Frame Type	"000", meaning Beacon frame
3	Security Enable	"0", security is disabled
4	Frame Pending	"0", do not use
5	AR (Ack Request)	"1", ACK is requested (unicast)
6	PAN ID Compression	"0", based on [802.15.4e] Table 2a
7	Reserved	as a rule set to "0", but don't care
8	Sequence Number Suppression	"0", do not suppress Sequence Number field
9	IE List Present	"1", in case use IEs, "0" in case do not use IEs
11- 10	Destination Addressing Mode	"11", for 64 bit extended address
13- 12	Frame Version	"10" required for Enhanced Beacon
15- 14	Source Addressing Mode	"11", for 64 bit extended address

848

849 (2) Sequence Number field

Based on [802.15.4e] 5.2.2.1.1 Beacon frame MHR fields, Sequence Number (macEBSN)
 held by the device.

- 852
- 853 (3) Addressing field

⁸⁵⁴ Destination Address is set to the source address of the enhancement beacon request. Refer ⁸⁵⁵ to section 3.6.3.2.1 DATA frame format (3) Addressing field of this specification.

- 856 Destination PAN Identifier is set to the source PAN Identifier.
- 857

858 (4) Payload IE field

- The same IEs of the Enhanced Beacon Request.
- 860
- 3.6.3.2.4. Enhanced Beacon request command frame format

Figure 4.8-12 shows the Enhanced Beacon request command frame format used in this
specification. (Clarifies the usage in this specification, based on [802.15.4e] 5.3.7.2
Enhanced beacon request)

Octets:2	1	2	2	8	Variable	1	2
Frame Control	Sequence Number	Destination PAN Identifier	Destination Address	Source Address	Payload IE	Command Frame Identifier	FCS
			Addressing fields				
MHR					MAC P	ayload	MFR

865

Figure 4.8-12 Enhanced Beacon request command frame format

- 866 867
- 868 (1) Frame Control field
- Table 4.8-27 shows the fields of the Frame Control field.
- 870

Table 4.8-27 Frame Control (Enhanced Beacon request command frame)

2-0	Frame Type	"011", meaning MAC command
3	Security Enable	"0", security is disabled
4	Frame Pending	"0", do not use
5	AR (Ack Request)	"0", ACK is not requested (broadcast)
6	PAN ID Compression	"0", based on [802.15.4e] Table 2a
7	Reserved	set to "0"
8	Sequence Number Suppression	"0", do not suppress Sequence Number field
9	IE List Present	"1" , in case use IEs, "0" in case do not use IEs
11- 10	Destination Addressing Mode	"10", for 16-bit broadcast address
13- 12	Frame Version	"10" required for Enhanced Beacon Request
15- 14	Source Addressing Mode	"11", for 64 bit extended address

- 872 (2) Sequence Number field
- Refer to [802.15.4] 5.2.1.2 Sequence Number field
- 874
- (3) Addressing field
- 876 Refer to section 3.6.3.2.1 DATA frame format (3) Addressing field of this specification.
- 877
- 878 (4) Payload IE field
- 879 Refer to section 3.6.6.1.1 MAC procedure
- 880
- (5) Command Frame Identifier field
- ⁸⁸² "0x07",based on [802.15.4e] Table 5.
- 883
- 3.6.3.3. MAC functional description
- This section describes the MAC features of this specification.

- 3.6.3.3.1.Transmission timing
- 888 (1) Transmission timing of DATA frame
- Figure 4.8-13 shows the transmission timing of DATA frame. (Clarifies the timing description of this specification, based on [802.15.4] 5.1.1.4 CSMA-CA algorithm, [802.15.4g] Table 51)
- 891

892

parameter *1	formula	nominal value *2 [µsec]
LIFS	aTurnaroundTime	1000
aUnitBackoffPeriod	phyCCADuration+ aTurnaroundTime	1130
phyCCADuration	_	130
RX to TX TurnaroundTime	_	300 or more , 1000 or less

893

*1: Refer to 3.6.3.3.5 of this specification

*2: For the error range of each value, refer to [802.15.4], [802.15.4e], [802.15.4g].

895 Figure 4.8-13 Transmission timing description of DATA frame

- (2) Transmission timing of ACK frame
- Figure 4.8-14 shows the transmission timing of ACK frame. (Clarifies the timing description of this specification, based on [802.15.4] 5.1.1.3 Interframe spacing (IFS))

HAN Working Group

	ACK	requested Frame	ACK
900		tack	
901			
	parameter*1	formula	nominal value [µsec]
	tack	RX to TX TurnaroundTime	300 or more, 1000 or less *2
902	*1: Refer to 3.6.3.3.5 of this spo	ecification	
903	*2: TX to RX TurnaroundTime	shall be 300µs or less.	
904	Figure 4.8-14 Tra	ansmission timing description	on of ACK frame
905			
906	3.6.3.3.2.CSMA-CA		
907 908	Figure 4.8-15 shows the CSMA including retry of this specificat	• • •	

Figure 4.8-15 CSMA-CA algorithm

910 911

912 **3.6.3.3.3.Backoff operation**

Figure 4.8-16 shows the backoff operation of this specification. The operation is principally based on the description of the [802.15.4] 5.1.1.4 CSMA-CA algorithm except for that ECHONET Lite profile assumes optional capability of receiving frames in the backoff period. When a node receives a frame in the backoff period, the backoff process is suspended till the receiving is finished and then resumed. (See node 3 in **Figure 4.8-16**.) In Figure 4.8-16, 'backoff(first)' and 'backoff(second)' reveal backoffs activated when NB is 0 and NB is 1, respectively.

Send	request

Node	Description of Operation
Node 1	Idle at CCA after backoff (first) -> Transmission
Node 2	Busy at CCA after backoff (first) -> Waiting for Idle (If possible, receive data) *1 -> Idle at CCA after backoff (second) -> Transmission
Node 3	Data reception during the backoff (first) -> Idle transition after receiving data -> Idle at CCA after remaining backoff (first) -> Transmission

HAN Working Group

922	In this figure the ACK frame is not shown.
923	*1: If busy at CCA, it is implementation dependent whether to receive the data, .
924	Figure 4.8-16 backoff operation
925	
926	3.6.3.3.4. Transmission time management
927	
928	(1) Pause duration management
929	Wait for the pause duration, based on [T108].
930	
931	(2) Total emission time management
932 933 934	Have a function that limit the sum of emission time per arbitrary one hour to be 360 sec or less, based on [T108].
935	3.6.3.3.5.MAC Constant and variable
936	(1) MAC constant
937 938	Table 4.8-28 shows the MAC Constant of this specification. (Specify the nominal value of this specification, based on [802.15.4g] Table 51, Table 71)
939	

940

Table 4.8-28 MAC constant

Constant	Description [unit]	Nominal Value *1	Remark
phyCCADuration	The duration for CCA [µsec]	130	128 or more
aTurnaroundTime	turnaround time between RX and TX [µsec]	1000	
RX to TX TurnaroundTime (=tack)	turnaround time from RX to TX [µsec]	300 or more, 1000 or less	

TX to RX TurnaroundTime	turnaround time from TX to RX [µsec]	less than 300	
macMinLIFSPeriod	minimum LIFS [µsec]	1000	Refer to 3.6.3.3.1
aUnitBackoffPeriod	unit period of backoff [µsec]	1130	Refer to 3.6.3.3.1
macAckWaitDuration*2	time to wait for ACK frame after completion of frame transmission. [ms]	5	See the description of macEnhAckWaitDuration in [802.15.4e] Table 52. The EACK is regarded as received if the PHY header is received within macEnhAckWaitDuration.

- ⁹⁴¹ *1: For the error range of each value, refer to [802.15.4], [802.15.4e], [802.15.4g].
- ⁹⁴² *2: The macAckWaitDuration means macEnhAckWaitDuration in this table.
- 943
- 944 (2) MAC variable
- Table 4.8-29 shows the MAC variable of this specification. (specify the default value of this specification, based on [802.15.4] Table 52)
- 947
- 948

Table 4.8-29 MAC variable

variable	Description	Range	Default	Remark
macMaxBE	maximum value of the backoff exponent	3-15 *1	8	
macMinBE	minimum value of the backoff exponent	0- macMaxBE	8	
macMaxCSMABackoffs	The maximum number of backoffs	0-5	4	
macMaxFrameRetries	The maximum number of retries	0-7	3	

*1: range is extended to increase the variation (however, default value is within the standard 949 range) 950 951 3.6.4. Interface part 952 3.6.4.1. Overview 953 The interface of a single-hop home network for ECHONET Lite over IPv6 shall be compliant 954 with Clause 3.5 unless otherwise specified in the following sub clauses. 955 956 3.6.4.2. Adaptation layer 957 See 3.5.3 in this document. 958 959 3.6.4.2.1. Fragmentation 960 See 3.5.3.1 in this document. 961 962 3.6.4.2.2. Header compression 963 See 3.5.3.2 in this document 964 965 3.6.4.2.3. Neighbor discovery 966 The coordinator and the host described in this clause shall not support 6LoWPAN ND in 967 Clause 3.5.3.3 due to applying ND based on IPv6 specified in the next clause. 968 3.6.4.3. Network layer 969 See 3.5.4 in this document. 970 971 3.6.4.3.1.IP addressing 972 See 3.5.4.1 in this document. 973 974

HAN Working Group

975	3.6.4.3.2.Neighbor discovery
976	See 3.5.4.2 in this document.
977	
978	3.6.4.3.3.Multicast
979	See 3.5.4.3 in this document.
980	
981	3.6.4.4. Transport layer
982	See 3.5.5 in this document.
983	
984	3.6.4.5. Application layer
985	See 3.5.6 in this document.
986	
987	3.6.5. Security configuration
988	3.6.5.1. Overview
989	This clause describes a security mechanism for single-hop network.
990 991	Most of the security configuration is the same in the clause 3.5.7 except special descriptions in this clause.
992	
993	3.6.5.2. Authentication
994 995	The coordinator shall be PANA Authentication Agent (PAA) and the host shall be PANA Client (PaC).
996	
997	3.6.5.3. Key generation
998	3.6.5.3.1.MAC layer security (link key)
999	The USRK and the LK are generated by following functions.

USRK = KDF(EMSK, "Wi-SUN JP SH-HAN" | "\0" | optional data | length)

- optional data = NULL(0x00)
- length = 64

LK = KDF(USRK, "Wi-SUN JP SH-HAN" | "\0" | optional data | length)

- optional data = EAP ID_P | EAP ID_S | IEEE802.15.4 Key Index
- length = 16

1001

3.6.6. Recommended network configurations

1003 3.6.6.1. Construction of new network

Once turned on, a coordinator constructs a new network compliant to this profile. The
 network construction is conducted by successive steps of (1) data link layer configuration,
 (2) network layer configuration and (3) security configuration. Overview of the network
 construction procedure is shown in Figure 4.8-17.

Figure 4.8-17 Overview of network construction procedures

1011

1010

1012 3.6.6.1.1.Data link layer configurations

Once turned on, a coordinator constructs an IEEE 802.15.4 PAN. Detailed procedures for PAN construction is shown as follows.

The coordinator first selects a channel to use. The channel selection is conducted via ED scanning or active scanning, or both. In the selection, channel with less interference to the other systems are more preferable. (Step 1)

Next, the coordinator selects the PAN ID that is not occupied on the selected channel in
 Step 1, and defines it as the PAN ID for the local network. A special control for PAN ID
 confliction avoidance is not defined in this profile, since the current specifications can cope
 with the case by using the existing functions such as discarding by MAC address. Selection
 criteria of PAN ID out of candidate IDs is out of scope of this profile. (Step 2)

1023 With conducting of the previous steps, PAN construction by the coordinator is completed.

1024

- 1025 **3.6.6.1.2. Network layer configurations**
- 1026 After data link layer configurations are completed, the coordinator conducts initial 1027 configurations for network layer (IPv6).
- First, the coordinator generates its own IPv6 address. The prefix is FE80::0/64, and interface ID is generated based on the coordinator's MAC address (EUI-64) according to definitions in [6LoWPAN] and [SLAAC]. (Step 3)
- The coordinator may provide the global address or an unique local address to IEEE
 802.15.4/4e/4g interface that defines IP address generated in Step 3, which is out of scope
 of this profile.
- In general cases, DAD (Duplicate Address Detection) is conducted in this step in order to
 avoid IP address confliction to the other nodes in the network. However, nodes compliant to
 this profile always generate their own IPv6 addresses from EUI-64 addresses and there is
 basically no confliction of IP addresses. Therefore, DAD may be omitted. (Step 4)
- 1038
- 1039 **3.6.6.1.3. Security configurations**
- 1040 The coordinator conducts security configurations following data link layer and network layer 1041 configurations.
- 1042
- 1043 **3.6.6.2.** Association to the network
- Once turned on, a new host tries to association to the existing network compliant to this profile. Association procedure by the host includes (1) data link layer configuration, (2) network layer configuration and (3) security configuration just in a same manner as PAN construction by a coordinator. Overview of association procedures to the existing network by a host is shown in Figure 4.8-18.

1053 3.6.6.2.1.Data link layer configurations

After turned on, a new host uses an enhanced active scan feature and sets MLME IE to its 1054 information Elements (IE) fields. As a response to the enhanced beacon request command 1055 from the host, the coordinator should send an enhanced beacon that set the same MLME IE 1056 to its information Elements fields; the host broadcasts an enhanced beacon request with 1057 some IEs command that is defined in [802.15.4e] on all available channels out of radio 1058 channels defined in [802.15.4] and [T108], a coordinator that receives the command returns 1059 an enhanced beacon with some IEs frame as a response, and the new host receives the 1060 enhanced beacon. Moreover, the new host recognizes a radio channel and a PAN ID 1061 employed by the coordinator, as results of those procedures. The content of MLME IE is out 1062 of scope of this profile. (Step 1) 1063

- In case only one PAN is detected, the host moves to the next step as for the PAN. In case several PANs are detected, the host needs to select one PAN in order to move to the next step. PAN selection criteria for the latter case is implementation matter and out of scope of this profile. (Step 2)
- In case the host fails to associate to the PAN after those association procedures, the host is
 recommended to retry the procedures from Step 1 or Step 2, where the other network
 should be tried in Step 2.

- At this point, the new host may conduct association procedures defined in [802.15.4]. 1071 However, such association procedures by data link layer can be omitted since the 1072 coordinator is recognized by upper layer. (Step 3) 1073 1074 3.6.6.2.2. Network layer configurations 1075 After association to IEEE 802.15.4 PAN is completed, the new host generates its own IPv6 1076 address. The prefix is FE80::0/64, and interface ID is generated based on the host's MAC 1077 address (EUI-64) according to definitions in [6LoWPAN] and [SLAAC]. (Step 4) 1078 In general cases, DAD (Duplicate Address Detection) is conducted in this step in order to 1079 avoid IP address confliction to the other nodes in the network. However, nodes compliant to 1080 this profile always generate their own IPv6 addresses from EUI-64 addresses and there is 1081 basically no confliction of IP addresses. Therefore, DAD may be omitted. (Step 5) 1082 At this point, the host initiates the device authentication with the coordinator. This 1083 authentication procedure should be a mutual authentication process. (Step 6) 1084 1085 3.6.6.2.3. Security configurations 1086 The new host conducts security configurations after data link layer and network layer 1087 configurations. 1088
- 1089

3.7. Recommended usage for single-hop smart meter-HEMS network

3.7.1. Overview

1094 This clause clarifies the recommended usage in constructing single-hop smart meter-Home 1095 Energy Management System (HEMS) which controls home devices for energy efficiency 1096 and has an interface of [802.15.4][802.154g][802.15.4e]. HEMS network for ECHONET Lite 1097 over IPv6. Note that this profile does not exclude other usages.

- 1098 Compliant nodes to this clause constructs single hop network with only a smart meter as a 1099 coordinator and a HEMS as a host without the other nodes on the same link.
- 1100
- 1101 **3.7.2.** PHY part

Required specifications in terms of IEEE 802.15.4/4e/4g standards in order to realize this usage is shown in **Table 4.8-30**.

1105

1104

Table 4.8-30 Device/PHY layer specifications in order to realize this usage

Item number *1	Support (Y:Yes, N:No, O:Option)	Item number *2	Support (Y:Yes, N:No, O:Option)	Item number *3	Support (Y:Yes, N:No, O:Option)	Item number *3	Recommend (Y:Yes, N:No, O:Option)
FD1	O.1	PLF1	Y	RF12	—	RF13.4	100 kbps *4
FD2	O.1	PLF2	Y	RF12.1	Y	RF13.5	Ν
FD3	Y	PLF3	Y	RF12.2	N	RF14	—
FD4	N	PLF4	Y	RF12.3	N	RF14.1	N
FD5	N	PLF4.1	Y	RF12.4	N	RF14.2	N
FD8	Y	PLF4.2	N	RF12.5 *5	N	RF14.3	Y

PLF4.3	Ν	RF12.6	Y	RF14.4	Ν
	PSDU size is up to 255 octets		_		

1107	*1: Corresponding to the item number in Table 4.8-7 Functional device ty	ypes
------	--	------

- *2: Corresponding to the item number in **Table 4.8-2** PLF and PLP capabilities
- *3: Corresponding to the item number in Table 4.8-3 RF capabilities
- *4: Only 100kbps is mandatory for single-hop smart meter-HEMS network. 50kbps isoptional.
- *5: CSM is not supported if 50kbps is not supported.
- 1113

The required specifications for the Additional PHY layer are shown in Table 4.8-31. This usage assumes compliance with the domestic regulation [T108] and compliant to the PHY specifications defined in [802.15.4g]. This specification uses GFSK modulation, 100 kbps data rate, 400 kHz occupied bandwidth (bundling 2 channels), and the 20 mW antenna power. In order to mitigate the impact of the deployment environment, antenna diversity is recommended.

1120

1121

Table 4.8-31 Additional PHY layer specifications in order to realize this usage

Parameters	Recommend	Remarks
Modulation scheme	GFSK	
Data rate	100 kbps	
Transmission power	20 mW or less	
Frequency channel	Channels of No. 33 to 60 defined by ARIB with bundling of an odd and an even channel.	Channels of No. 33 to 38 are also utilized by systems employing 250 mW transmission power.
Occupied bandwidth	400 kHz (with 2 channel bundling),	

Receiver sensitivity	-88 dBm or less (PSDU length = 250 octets, data rate = 100 kbps, PER<10%, Power measured at antenna terminals, Interference not present)	
Transmission preamble length	1200us - 4000us	
Preamble length assumed at receiver	1200us	
Antenna gain	3 dBi or less	
Antenna diversity	2 antenna selection diversity, recommended	

1123 **3.7.3. MAC part**

- 1124 3.7.3.1. MAC layer specifications
- 1125 Required specifications in terms of IEEE 802.15.4/4e/4g standards are shown in Table
- 4.8-32. Non-beacon enabled configurations are selected by MAC layer when these
 specifications are deployed.
- 1127 1128
- 1129

Table 4.8-32 MAC layer specifications in order to realize this usage

Item number *1	Support (Y:Yes, N:No, O:Option)	Item number *1	Support (Y:Yes, N:No, O:Option)	Item number *1	Support (Y:Yes, N:No, O:Option)	ltem number *2	Support (Y:Yes, N:No, O:Option)
MLF1	Y	MLF7	Y	MLF15	N	MF1	Y
MLF1.1	N	MLF8	N	MLF16	N	MF2	Y
MLF2	Y	MLF9	Y	MLF17	N	MF3	Y
MLF2.1	N	MLF9.1	Y	MLF18	MLF10.2: Y *13	MF4	Y

MLF2.2	N	MLF9.2	Y	MLF18.1	MLF18:Y	MF4.1	N
MLF2.3	N	MLF9.2.1	Y	MLF18.1.1	MLF18:Y	MF4.2	N
MLF3	Y	MLF9.2.2	Y	MLF19	N	MF4.3	N
MLF3.1	FD1:Y FD2:N	MLF10.1	Y*5	MLF19.1	N	MF4.4	N
MLF3.2	Y	MLF10.2	FD1:O *12 FD2:M *11	MLF19.2	N	MF4.5	N
MLF4	Y	MLF10.3	N	MLF19.3	N	MF4.6	N
MLF5	N	MLF10.4	N	MLF19.4	N	MF4.7	Y*9
MLF5.1	N	MLF11	N	MLF19.5	N	MF4.8	N
MLF5.2	N	MLF12	N	MLF19.6	N	MF4.9	N
MLF6	Y	MLF13	N	MLF19.7	N	MF5	Y*10
		MLF15(4g)	N	MLF19.8	N		
				MLF20	N		
				MLF21	N		
				MLF23	N		
				MLF23.1	N		
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				1	1		

- 1131 *1 : Corresponding to item number in Table 4.8-5 MAC sub-layer functions
- 1132 *2 : Corresponding to item number in Table 4.8-6 MAC frames
- ¹¹³³ *9 : May be employed by FD2 (not clarified in references).
- 1134 *10 : 2 octet FCS is employed when PSDU size is no more than 255 octets

- *11 Active scanning is employed by FD1 for the channel selection and by FD2 for the
 network identification.
- ¹¹³⁷ *12 FD1 must have capability to respond to the Active scanning performed by other devices.
- ¹¹³⁸ *13 FD1 must have capability to respond to the EBR.

- 1140 3.7.3.2. MAC frame format
- See 3.6.3.2 in this document.
- 1142
- 1143 **3.7.3.3. MAC functional description**
- See 3.6.3.3 in this document.
- 1145
- 1146 **3.7.4.** Interface part
- 1147 **3.7.4.1. Overview**
- 1148 The interface of a single-hop smart meter-HEMS network for ECHONET Lite over IPv6 shall 1149 be compliant with Clause 3.5 unless otherwise specified in the following sub clauses.
- 1150
- 3.7.4.2. Adaptation layer
- See 3.5.3 in this document.
- 1153
- 1154 **3.7.4.2.1.Fragmentation**
- See 3.5.3.1 in this document.
- 1156
- 1157 **3.7.4.2.2.Header compression**
- See 3.5.3.2 in this document

- 1160 **3.7.4.2.3.Neighbor discovery**
- The smart meter and the HEMS described in this clause shall not support 6LoWPAN ND in Clause 3.5.3.3 due to applying ND based on IPv6 specified in the next clause.
- 1163
- **3.7.4.3. Network layer**
- 1165 The single-hop smart meter-HEMS network shall support IPv6 protocol [IPv6] in Table 1166 4.8-33.
- 1167
- 1168

Table 4.8-33 Network Layer: IPv6

Item number	Item description	Reference section in standard	Support (Y:Yes, N:No, O:Option, I:Irrelevant)
IP1	Header Format	[IPv6] 3	Y
IP1.1	Extension Headers	-	l
IP1.2	Extension Header Order	[IPv6]4.1	I
IP1.3	Options	[IPv6] 4.2	I
IP1.4	Hop-by-Hop Options Header	[IPv6] 4.3	I
IP1.5	Routing Header	[IPv6]4.4	
IP1.6	Fragment Header	[IPv6] 4.5	
IP1.7	Destination Options Header	[IPv6] 4.6	I
IP1.8	No Next Header	[IPv6]4.7	l
IP1.9	AH Header	[AH]	I
IP1.10	ESP Header	[ESP]	I
IP2	Deprecation of Type 0 Routing	[IPv6-RH]	I
	Headers		
IP3	Path MTU Discovery	[IPv6] 5	I
IP4	Flow Labels	[IPv6] 6	N
IP5	Traffic Classes	[IPv6] 7	Ν

1169

1170

1171 The single-hop smart meter-HEMS network also shall support ICMPv6 protocol [ICMPv6] in 1172 Table 4.8-34.

Table 4.8-34 Network Layer: ICMPv6

Item number	Item description	Reference section in standard	Support (Y:Yes, N:No, O:Option, I:Irrelevant)
ICMP1	Message Format	[ICMP6] 2.1	Y
ICMP2	Message Source Address Determination	[ICMP6] 2.2	Y
ICMP3	Message Checksum Calculation	[ICMP6] 2.3	Y
ICMP4	Message Processing Rules	[ICMP6] 2.4	Y
ICMP5	Destination Unreachable Message	[ICMP6] 3.1	Y*1
ICMP6	Packet Too Big Message	[ICMP6] 3.2	
ICMP7	Time Exceeded Message	[ICMP6] 3.3	I
ICMP8	Parameter Problem Message	[ICMP6] 3.4	Y
ICMP9	Echo Request Message	[ICMP6] 4.1	Y
ICMP10	Echo Reply Message	[ICMP6] 4.2	Y

*1: The port unreachable (code=4) is only applicable.

1176

1175

- 1177 **3.7.4.3.1.IP** addressing
- See 3.5.4.1 in this document.

1179

1180 **3.7.4.3.2.Neighbor discovery**

See 3.5.4.2 in this document except for the parts of Neighbor Solicitation Message and
 Neighbor Advertisement Message. In the single-hop smart meter-HEMS network, the
 transmission of Neighbor Solicitation Message is optional but the node shall respond by
 sending a Neighbor Advertisement Message to the received Neighbor Solicitation Message

- 1185 (see Table 4.8-35).
- 1186
- 1187

1189

Table 4.8-35 Neighbor Solicitation and Neighbor Advertisement Messages

Item number	Item description	Support (Y:Yes, N:No, O:Option, I:Irrelevant)	Notes
ND4	Duplicate Address Detection	I	
ND8	Neighbor Solicitation (NS) Message	-	See ND8.1, ND8.2 and ND8.3
ND8.1	NS Transmission	Ο	Optional but at least one of the specifications described in
ND8.2	No NS Transmission	0	ND8.1 and ND8.2 is required to be supported.
ND8.3	NS Reception	Y	
ND9	Neighbor Advertisement (NA) Message	-	See ND9.1, ND9.2, ND9.3 and ND9.4
ND9.1	Solicited NA Transmission	Y	
ND9.2	Solicited NA Reception	ND8.1:Y ND8.2:N	
ND9.3	Unsolicited NA Transmission	Ν	
ND9.4	Unsolicited NA Reception	Ν	

1190 1191

- 1192 **3.7.4.3.3.Multicast**
- See 3.5.4.3 in this document.
- 1194
- 1195 3.7.4.4. Transport layer
- See 3.5.5 in this document.

- 1198 **3.7.4.5.** Application layer
- See 3.5.6 in this document.
- 1200 Application should not send packets larger than 1280 octets as a link MTU.
- 1201 This means application maximum PDU size is below:
- 1202 1280 'size of IPv6 header (incl. extension header)' 'size of Transport layer header'
- For example: In the case that an application uses UDP and does not use IPv6 extension headers, the application maximum PDU size is below:
- 1205 1280 40(IPv6 header size) 8(UDP header size) = 1232 octets.
- 1206

1207 **3.7.5.** Security configuration

- 1208 **3.7.5.1. Overview**
- 1209 This clause describes a security mechanism for single-hop smart meter-HEMS network.
- 1210 Most of the security configuration is the same in the clause 3.5.7 except special descriptions 1211 in this clause.
- 1212
- 1213 **3.7.5.2.** Authentication
- 1214 The smart meter shall be PAA and the HEMS shall be PaC.
- 1215
- 1216 **3.7.5.3. Key generation**
- 1217 3.7.5.3.1.MAC layer security (link key)
- 1218 The USRK and the LK are generated by following functions.

USRK = KDF(EMSK, "Wi-SUN JP Route B" | "\0" | optional data | length)

- optional data = NULL(0x00)
- length = 64

LK = KDF(USRK, "Wi-SUN JP Route B" | "\0" | optional data | length)

- optional data = EAP ID_P | EAP ID_S | IEEE802.15.4 Key Index
- length = 16

1219

- 1220 The smart meter and the HEMS shall have two or more KeyDescriptors to hold at least two 1221 keys at the same time. Both nodes shall use the latest key at the time of transmission.
- 1222

1223 3.7.6. Recommended network configurations

- Both a smart meter and HEMS have "Pairing ID", which length is 8 octets, and the ID is used to associate the smart meter with the HEMS. In this specification, suppose the ID is set to a smart meter and HEMS in advance. In addition, NAI and authentication key for PANA/EAP are also set to a smart meter and HEMS in advance.
- A smart meter determines the radio channel and PAN ID that is used to construct the network, by following procedure.
- 1230 1-1: Data link (MAC) layer configuration,
- Radio channel selection and PAN ID detection are conducted via ED scanning or Enhanced
 Active scanning, or both. Selection criteria of radio channel and PAN ID is out of scope of
 this profile.
- 1234 **1-2: Network layer configuration**,
- 1235 A smart meter generates its own IPv6 link local address compliant to [SLAAC].
- After the smart meter that is coordinator completes the network construction, HEMS attempt to connect to the smart meter, as the following configurations.
- 1238 2-1: Data link (MAC) layer configuration,
- 1239 HEMS identifies the smart meter network by using Enhanced Active scanning.

- 1240 **2-2: Network layer procedure**,
- 1241 HEMS generates its own IPv6 link local address compliant to [SLAAC].

HEMS should calculate the IPv6 link local address of the smart meter from the source
address of Enhanced Beacon message. And HEMS requests a smart meter to authenticate
by [PANA] using NAI and authentication key, which are pre-shared. The smart meter
establishes PANA session with the HEMS, and the smart meter authenticates HEMS based
on NAI and authentication key. When authentication succeeds, the smart meter and the
HEMS share the MAC layer encryption key.

- After sharing the MAC layer encryption key, the smart meter can communicate with the HEMS, by using encrypted messages. HEMS conducts service discovery procedure using ECHONET Lite protocol, and the smart meter can notify the HEMS of meter readings every 30 minutes.
- 1252
- 1253 **3.7.6.1.** Bootstrapping

Once a smart meter is turned on, it constructs a new network compliant to this profile. This procedure is same as sub clause 3.6.6.1. And, once HEMS is turned on, it attempts to connect to the network that is constructed by the smart meter. This procedure is same as sub-clause 3.6.6.2. Overview of network configuration and association procedure to the network is shown in Figure 4.8-19.

1261

Figure 4.8-19 : Overview of network construction procedure

1262

1263 3.7.6.1.1. Data link layer configuration

Data link layer configuration of a coordinator is same as sub clause 3.6.6.1.1, but smart meter must set no information to its Information Elements fields in Enhanced Beacon Request if Active scan is employed.

To detect the smart meter network, HEMS uses an Enhanced Active scan feature and set MLME IE to its Information Elements field which is terminated with a list termination IE (ID=0xf). As a response to the Enhanced Beacon Request command from the HEMS, the smart meter should send an Enhanced Beacon that set the same MLME IE to its Information Elements field which is terminated with a list termination IE (ID=0xf). Association procedure should be omitted. Other data link layer configuration of HEMS is same as sub-clause 3.6.6.2.1.

1274 Configuration information is shown in Table 4.8-36.

1275	
1215	

Table 4.8-36 Sub-ID (MLME IE)

Sub-ID value	Content length	Name	Description

0x6	8	Variable	Unmanaged	This Sub-ID is used as the
			(Pairing ID)	information to help HEMS detect the corresponding smart meter network. This Sub-ID is defined by this profile.
				P. ee.

1277 **3.7.6.1.2.Network layer configuration**

A smart meter use IPv6 link local address only. Other network layer configuration of a smart meter is the same as sub-clause 3.6.6.1.2.

HEMS use IPv6 link local address only, too. Other network layer configuration of HEMS isthe same as sub-clause 3.6.6.2.2.

Authentication procedure refers to sub clause 3.7.6.3.

1283

1284 3.7.6.2. IP Address Detection

Before the authentication procedure by PANA, HEMS should calculate the IPv6 address of the smart meter. As a way to detect IPv6 address of the opposite device, HEMS uses the source MAC address field of an Enhanced Beacon message from the smart meter, and HEMS estimates IPv6 link local address of the opposite smart meter.

1289 HEMS may be omitted Neighbor Discovery procedure defined in [ND].

1290

1291 3.7.6.3. Authentication and Key Exchange

1292 The HEMS conducts security configurations after data link layer and network layer 1293 configurations. In other words, the HEMS acting as a PaC initiates a PANA session to the

- smart meter acting as the PAA.
- 1295
- 1296 **3.7.6.4.** Application
- As stated in 3.7.4.5, use ECHONET Lite as an application protocol, and support using compound data format.

1300 **3.7.6.4.1.ECHONET Object**

1301 Smart meter and HEMS use the ECHONET object (EOJ) as described in Table 4.8-37.

1302

1303

1304

1305

Table 4.8-37 ECHONET Objects (EOJ)

	Class group code	Class code	Instance code
Smart meter	0x02	0x88	0x01
HEMS	0x05	0xFF	0x01

Note: An instance code is fixed as 0x01.

1306 3.7.6.4.2.ECHONET Lite Service (ESV)

1307 Smart meter and HEMS use The ECHONET Lite service code as described in Table 4.8-38.

1308

1309

Table 4.8-38 ECHONET Lite Service (ESV) Code

Service Code (ESV)	ECHONET Lite Service Content	Symbol
0x51	Property value write request "response not possible"	SetC_SNA
0x52	Property value read "response not possible"	Get_SNA
0x61	Property value write request (response required)	SetC
0x62	Property value read request	Get
0x71	Property value Property value write response	Set_Res
0x72	Property value read response	Get_Res
0x73	Property value notification	INF
0x74	Property value notification (response required)	INFC

0x7A	Property value notification	INFC_Res
	response	

1311 3.7.6.4.3.The ECHONET device object (EPC)

The ECHONET device object (EPC) for Smart meter is described in Table 4.8-39 and Table 4.8-40, and is used between the communication of Smart meter and HEMS.

1314

1315

Table 4.8-39 Definition of Device Object Super Class Properties

Property name	EPC	Contents of property	Access rule
Operation status	0x80	This property indicates the ON/OFF status.	Get
Installation location	0x81	This property indicates the installation location.	Set/Get
Standard version information	0x82	This property indicates the version number of the corresponding standard.	Get
Fault status	0x88	This property indicates whether a fault (e.g. a sensor trouble) has occurred or not.	Get
Manufacturer code	0x8A	Manufacturer code defined by the ECHONET Consortium.	Get
Production number	0x8D	It's used for specifying a smart meter.	Get
Current time setting	0x97	Current time (HH:MM format)	Get
Current date setting	0x98	Current date (YYYY:MM:DD format)	Get
Status change announcement property map	0x9D		Get

Set property map	0x9E	Get
Get property map	0x9F	Get

1317 1318

Table 4.8-40 Definition of ECHONET Lite Device Object for Smart electric energy meter class

Property name	EPC	Contents of property	Access rule
	0x80		Get
Operation status	0.00	This property indicates the ON/OFF status.	Gei
Composite transformation ratio	0xD3	This property indicates the composite transformation ratio using a 6-digit decimal notation number.	Get
Number of effective digits for cumulative amounts of electric energy	0xD7	This property indicates the number of effective digits for measured cumulative amounts of electric energy.	Get
Measured cumulative amount of electric energy (normal direction)	0xE0	This property indicates the measured cumulative amount of electric energy using an 8-digit decimal notation number.	Get
Unit for cumulative amounts of electric energy (normal and reverse directions)	0xE1	This property indicates the unit (multiplying factor) used for the measured cumulative amount of electric energy and the historical data of measured cumulative amounts of electric energy)	Get
Historical data of measured cumulative amounts of electric energy (normal direction)	0xE2	This property indicates the date of historical data and measured cumulative amounts of electric energy (maximum 8 digits) for normal direction, which consists of 48 data value	Get

		of half-hourly data for the preceding 24 hours.	
Measured cumulative amount of electric energy (reverse direction)	0xE3	This property indicates the measured cumulative amount of electric energy using an 8-digit decimal notation number.	Get
Historical data of measured cumulative amounts of electric energy (reverse direction)	0xE4	This property indicates the date of the historical data and measured cumulative amounts of electric energy (maximum 8 digits) for reverse direction, which consists of 48 data value of half-hourly data for the preceding 24 hours.	Get
Day for which the historical data of measured cumulative amounts of electric energy is to be retrieved	0xE5	This property indicates the day for which the historical data of measured cumulative amounts of electric energy (which consists of 48 pieces of half-hourly data for the preceding 24 hours) is to be retrieved.	Set/Get
Measured instantaneous electric energy	0xE7	This property indicates the measured effective instantaneous measured effective instantaneous electric energy in watts.	Get
Measured instantaneous currents	0xE8	This property indicates the measured effective instantaneous R and T phase currents in amperes.	Get
Cumulative amounts of electric energy measured at fix time (normal direction)	0xEA	This property indicates the most recent cumulative amount of electric energy (normal direction)	Get/INF/INFC

		measured at 30-minute intervals, and measured date of measurement, time of measurement, and cumulative electric energy (normal direction).	
Cumulative amount of electric energy measured at fix time (reverse direction)	0xEB	This property indicates the most recent cumulative amount of electric energy (reverse direction) measured at 30-minute intervals, and measured date of measurement, time of measurement, and cumulative electric energy (reverse direction).	Get/INF/INFC

- 1319
- 1320

1321 3.7.6.4.4. The response for consecutive request

- Smart meter and HEMS make both request and a response as a set of communication, and
 perform one response to one request. In case sending the request of Get command
 consecutively, you need to receive the Get response before requesting another Get request
 command.
- In addition, these specifications are the regulations to one-to-one communications, so a
 consecutive demand means that the demand from the same equipment continues.
- 1328

1329 **3.7.6.4.5.** Handling multiple data

- Such as in a case that there is no change of the serial number accompanying exchange of
 a smart meter, etc., and when HEMS receives multiple time of the integral-power consumption value (30-minute value) of the same measurement time, etc. from the same
- 1333 smart meter, the latter data shall be handled as correct data.
- 1334
3.7.7. Usage of credential in Japanese market Route-B (supplemental) 1335

In Japanese Route-B (smart meter-HEMS) network, a Route-B specific credential (Table 1336 4.8-41) is defined and required to use it. For this purpose, this subsection defines how to 1337

- use the credential in the communication protocols. 1338
- 1339
- 1340

Table 4.8-41 Route-B credential

Name	Description
Route-B authentication ID	Unique ID used to pair up a specific smart meter and HEMS. Character string of 32 comprised of 0~9 and A~F ASCII characters (32 octets). In this profile, this is converted to the ID ([NAI] format) used by PANA (EAP-PSK) and the "Pairing ID" by the rule described later.
(Route B authentication) Password	Password linked to Route B authentication ID (character string of 12 comprised of 0~9, a~z, and A~Z ASCII characters). In this profile, this is used in generating PSK, which is utilized in [EAP-PSK], by the rule described later.

1341

- 3.7.7.1. Conversion of Route-B authentication ID to EAP Identifiers 1342
- Based on the 32 digit, Route-B authentication ID, the following rules are used to generate EAP 1343
- Identifiers (ID_S, ID_P) ([NAI]). 1344

[NAI generation rules]
Smart meter side NAI (EAP ID_S): "SM" +"Route-B authentication ID" (34 octets)
HEMS meter side NAI (EAP ID_P): "HEMS" +"Route-B authentication ID" (36 octets)

Example:

When Route-B authentication ID is "0023456789ABCEDF0011223344556677", Smart meter side NAI (EAP ID_S): "SM0023456789ABCEDF0011223344556677" HEMS side NAI (EAP ID_P): "HEMS0023456789ABCEDF0011223344556677"

1346

- 1347 3.7.7.2. Conversion of Password to PSK
- 1348 PSK used in EAP-PSK is generated using the following rules.

[PSK ge	neration rules]
	n the Password linked to Route-B authentication ID, the following PSK generation (PSK_KDF) is used to generate the 16 octet PSK.
PSK = P	PSK_KDF (Password)
= LS	Bytes16 (SHA-256 (Capitalize (Password))
•	rder 16 octets of the output created by using SHA-256 in the hash function on th ed Password character string)
Example	
When	the Password is "0123456789ab"
PSK =	ELSBytes16(SHA-256("0123456789AB"))
= (0xf58d060cc71e7667b5b2a09e37f602a2

1351 3.7.7.3. Conversion of Route-B authentication ID to Pairing ID

HEMS performs Enhanced Active Scan using IEs field to detect the home smart meter. 1352 MLME IE (Group ID=0x1) will be used for the Payload IEs field of the Enhanced Beacon 1353 Request sent by HEMS, and the lower order 8 octets (Pairing ID) of the Route-B 1354 authentication ID will be included in the IE Contents of Sub-ID=0x68(Unmanaged).When the 1355 Pairing ID stored in MLME IE of the Payload IEs matches the Pairing ID stored in the smart 1356 meter, the smart meter responds by returning the Enhanced Beacon. This Enhanced 1357 Beacon is unicast and also includes the same Pairing ID in the Payload IEs field. After 1358 confirmation that the smart meter has the same Pairing ID, HEMS will start PANA 1359 negotiation with this smart meter. (Figure 4.8-20) 1360

3.8. Recommended usage for single-hop home area network (HAN) among devices

1369 **3.8.1. Overview**

This clause clarifies the recommended usage in constructing network for ECHONET Lite
 over IPv6 communication between a HEMS and multiple devices. Compliant nodes to this
 clause constructs a network with the HEMS as a central coordinator as shown in Figure
 4.8-21.

1374

Figure 4.8-21 Home area network for multiple devices

- 1375 1376
- 1377 **3.8.2.** PHY part
- 1378 See 3.7.2 in this document.
- 1379

1380 **3.8.3. MAC part**

See 3.7.3 in this document if there is no additional description in this clause. An upper layer
 of the relay-unaware device defined in 3.8 should ignore a MAC frame which is security
 enabled and contains the IE List present field at the same time. Also it should ignore a MAC
 frame (MSDU) which hasSRA IE or SLR IE defiend in 3.9.3.2.4.

1385

Wi-SUN Profile for HAN

 $113\,$ of $206\,$

1386 3.8.3.1. Capability Notification IE

Figure 4.8-22 shows the structure of Capability Notification IE. The Sub-ID of this IE is 0x67 (Unmanaged).

Capability Notification IE is a payload IE that is attached to Enhanced Beacon Request command frame or Enhanced Beacon frame to inform to corresponding node regarding what capabilities the sender has. Two flags below are defined to be used to inform what capabilities on HAN relay function the sender has.

- 1393
- Sleeping-support (bit 5) see 3.10.3.2.1
- Relay-endpoint (bit 6) if this flag is set, it indicates that the sender can be a relay endpoint and that
 means that the sender is either a HEMS or HAN-end-device (defined in 3.9) within the HAN network
 which relaying function is supported. The detail is specified in 3.9.3.2.1.
- Relay-intermediate (bit 7) if this flag is set, it indicates that the sender can be a relay device within
 the HAN network which relaying function is supported. The detail is specified in 3.9.3.2.1.

1400

If the sender of this IE does not support any capabilities regarding HAN relay network, both
of these flags must not be set. Also, if the sender needs to inform nothing, it can omit to
attach this IE to the EBR or to the EB, disregarding of the presence of this IE in the
corresponding EBR. PAN coordinator is also allowed to attach this IE to the EB even if this
IE was not attached to the corresponding EBR.

1406

Bits	s: 0-7	8-:	14	15		Octets	: Variable	
Lei	ngth	Sub (0x		Type (Short for	mat)	IE c	ontent	
	Bits:	0-4		5		6	7	
	Reser		Slee	ping-support	Relay	-endpoint	Relay-interm	ediate
	(0)					HAN rel	ay function	

1407

1408

1409

Figure 4.8-22 Capability Notification IE

Wi-SUN Profile for HAN

At the sending of this IE, the sender of Enhanced Beacon Request command must set all the possible functions to this IE. On the other hand, the sender of Enhanced Beacon must set proper and minimum set of necessary functions to this IE according to decision to be made by its self. More detailed procedure for this IE shall be presented in relevant part for each recommended usage in this document respectively.

At the reception of EB or EBR with the Capability Notification IE attached, the device must not discard the frame regardless of its capabilities of sending this IE and support of relay or sleeping functions.

- 1418
- 1419 **3.8.4.** Interface part
- 1420 **3.8.4.1. Overview**
- 1421 The interface of a single-hop home network among devices for ECHONET Lite over IPv6 1422 shall be compliant with clause 3.7.4 unless otherwise specified in the following sub clauses.
- 1423
- 1424 3.8.4.2. Adaptation layer
- 1425 See 3.5.3 in this document.
- 1426
- 1427 **3.8.4.2.1.Fragmentation**
- See 3.5.3.1 in this document.
- 1429
- 1430 **3.8.4.2.2.Header compression**
- 1431 See 3.5.3.2 in this document.
- 1432
- 1433 **3.8.4.2.3.Neighbor discovery**
- HEMS and devices described in this clause shall not support 6LoWPAN ND in clause
 3.5.3.3 due to applying ND based on IPv6 specified in the next clause.

- 3.8.4.3. Network layer 1437 See 3.5.4 in this document. 1438 1439 3.8.4.3.1.IP addressing 1440 See 3.5.4.1 in this document. 1441 1442 3.8.4.3.2. Neighbor discovery 1443 See 3.5.4.2 in this document. 1444 1445 3.8.4.3.3.Multicast 1446 See 3.5.4.3 in this document. 1447 1448 3.8.4.4. Transport layer 1449 See 3.5.5 in this document. 1450 1451 3.8.4.5. Application layer 1452 See 3.5.6 in this document. 1453 1454 3.8.5. Security configuration 1455 3.8.5.1. Overview 1456 This clause describes a security mechanism for single-hop home network among devices. 1457 Most of the security configuration is the same in the clause 3.5.7 except special descriptions 1458 in this clause. 1459
- 1460

1461	3.8.5.2. Authentication
1462	The HEMS shall be PAA and the devices shall be PaC.
1463	
1464	3.8.5.2.1.PANA
1465 1466	PAA and PaC shall conform to 3.5.7.2.1 in this document except two modification described below:
1467 1468	 In addition to PaC-initiated session, PANA session can be initiated by PAA (PAA- initiated).
1469	• PANA session lifetime shall be set to 0xFFFFFFF (136 years: practically permanent).
1470	
1471	In addition, PAA and PaC shall support following items:
1472 1473	 Unicast and multicast messages shall be protected by ciphered MAC frames with "HAN group key" shared by all the nodes authenticated in the network.
1474	• PAA shall distribute HAN group key to PAC in the final phase of PANA authentication.
1475 1476 1477	 HAN group key shall be distributed in a vendor-specific AVP which is newly defined in this document. The Vendor-ID in the vendor-specific AVP shall be 45605 (Wi-SUN Alliance).
1478 1479	 The vendor-specific AVP defined for HAN group key distribution shall be encrypted in Encryption-Encap AVP [PANA-ENC]
1480 1481	 The vendor-specific AVP used for HAN group key distribution shall contain HAN group key, MLE key, Key-ID, authentication counter, and outgoing frame counter of PAA.
1482 1483	• PANA session lifetime shall be set to 0xFFFFFFF and it has no relation to HAN group key expiration.
1484 1485	 Therefore PANA session lifetime and HAN group key's lifetime are not necessarily equal.
1486 1487	 PAA shall increment an authentication counter for a PaC each time PAA authenticates the PaC.
1488 1489	 PAA shall maintain an authentication counter for each PaC, and shall keep its value even if the PANA session with the PaC is terminated.
1490	• HAN group key's lifetime shall be maintained by PAA inside, and is not notified to PaC.
1491	• When PAA updates a HAN group key, PAA shall distribute the new key to PaCs.

Wi-SUN Profile for HAN

 $117\;\;{\rm of}\;206$

- PAA shall update the current HAN group key before the MAC frame counter overflow.
- Updated HAN group key is distributed to PaC with PANA protocol in a unicast manner.
- PaC can request PAA for the current HAN group key.
- MAC key generation function and MAC key defined in 3.7.5.3 are not used.
- It is recommended PAA supports at least 16 PaCs in the network. PAA shall maintain different ID and password for each PaC.
- 1498 **3.8.5.2.2.EAP**
- See 3.5.7.2.2 in this document.
- 1500
- 1501 **3.8.5.3.** Authentication and key distribution
- 1502 **Figure 4.8-23** shows PANA authentication and HAN group key distribution sequence.

1504

Wi-SUN Profile for HAN

118 of 206

The default value for initial timeout of PCI (PCI_IRT) is 3 seconds in the single-hop home network among devices unlike original default value (1 second) defined in [PANA]. The default value of the initial retransmission interval for other messages (REQ_IRT) is 3 seconds as well.

1510 3.8.5.3.1.Authentication request by PAA

PAA shall add Encryption-Algorithm AVP to Step2 PAR message in order to convey an
 encryption algorithm to be used to encrypt vendor-specific AVP contained in Step 8 PAR
 and subsequent messages. Table 4.8-42 shows Step2 PAR message including an

- 1514 Encryption-Algorithm AVP.
- 1515

1516Table 4.8-42 Authentication and key distribution Step2 : Message of PAR(PRF-1517ALGO,INT-ALGO,ENC-ALGO,S=bit)

Field	Subfield	Size(octet)	Description (value etc.)		
PANA	Reserved	2			
Message	Message Length	2	52		
Header	Flags	2	'R'bit=1、'S'bit=1		
	Message Type	2	2=PANA-Auth-Request		
	Session Identifier	4			
	Sequence Number	4			
PANA	PRF-Algorithm AVP	12	Contains PRF-Algorithm=5		
Payload	/ (• 1				
	Integrity-Algorithm AVP	12	Contains Integrity-Algorithm=12		
	Encryption- Algorithm AVP	12	Contains Encryption- Algorithm=1(AES128_CTR)		

1519 3.8.5.3.2. Authentication response by PaC

PaC shall add an Encryption-Algorithm AVP to Step3 PAN in order to convey an encryption
 algorithm to be used to encrypt vendor-specific AVP. Table 4.8-43 shows Step2 PAN
 including an Encryption-Algorithm AVP.

1523

1524

1525

Table 4.8-43 Authentication and key distribution Step3 : Message of PAN(PRF-ALGO,INT-ALGO,ENC-ALGO,S-bit)

Field	Subfield	Size(octet)	Description
PANA	Reserved	2	
Message	Message Length	2	52
Header	Flags	2	'S'bit=1
	Message Type	2	2=PANA-Auth-Answer
	Session Identifier	4	
	Sequence Number	4	
PANA	PRF-Algorithm AVP	12	Contains PRF-Algorithm=5
Payload			
	Integrity-Algorithm AVP	12	Contains Integrity-Algorithm=12
	Encryption-Algorithm AVP	12	Contains Encryption- Algorithm=1(AES128_CTR)

1526

- 1527 3.8.5.3.3.Distribution of HAN group key by PAA
- When PAR with 'C' bit set is transmitted to PaC after successful authentication, HANGroup-Key AVP (vendor-specific AVP) described below shall be added (Authentication /
 Key distribution: Step 8). HAN group key, MLE Key, Key-ID, authentication counter value
 (AuthCounter), and outgoing frame counter of PAA are included in HAN-Group-Key AVP.
 PAA increments an AuthCounter value by one with each authentication (See 3.8.5.4.5 for
 details). HAN-Group-Key AVP shall be encrypted using Encryption-Encap AVP.
- 1534 See 3.8.5.4.6 for more information about HAN group key generation.
- 1535 See 3.8.5.4.7 for more information about HAN-Group-Key AVP encryption.

Wi-SUN Profile for HAN

 $120 \ {\rm of} \ 206$

1536	See 3.8.5.4.3 for more informat	ion about HAN-Group-Key AVP.
1537		
1538	After distribution of HAN group	key, PAA sets the following information on its MAC layer:
1539	Incoming frame counter of the	e PaC to which PAA sent the HAN group key
1540	= AuthCounter 00 00 00	(Note: ' ' indicates concatenation.)
1541		
1542		

- 1543 **Table 4.8-44** shows the detail of the PAR message with HAN-Group-Key AVP.
- 1544
- 1545

Table 4.8-44 Authentication / Key distribution (Step 8): Message of PAR (Result-Code, EAP-Payload, Key-ID, SESSION_LIFETIME, ENC-ENCAP [HAN-Group-Key AVP], 1547 AUTH and 'C' bit) 1548

Field	Sub field	Size(octet)	Description
PANA	Reserved	2	
Messa	Message Length	2	132
ge Header	Flags	2	'R'bit=1、'C'bit=1
Ticauci	Message Type	2	2=PANA-Auth-Request
	Session Identifier	4	
	Sequence Number	4	
PANA	Result-Code AVP	12	contains Result-Code
Payloa d	EAP-Payload AVP	12	contains EAP-Payload
u	Key-Id AVP	12	contains EAP MSK Identifier
	Session-Lifetime AVP	12	contains PANA session lifetime
	Encryption-Encap AVP	60	HAN-Group-Key AVP is a vendor specific AVP which contains a HAN group key. This AVP is
	HAN–Group -Key AVP	52	defined in this document. It is encrypted and encapsulated in Encryption-Encap AVP.
	AUTH AVP	24	contains Message Authentication Code

1549

3.8.5.3.4. Response to HAN group key reception by PaC 1550

If a PaC receives a PAR message with HAN-Group-Key AVP (vendor-specific AVP) from 1551 PAA (Authentication / Key distribution: Step 8), the PaC replies a PAN (Key-ID, AUTH and 1552 'C'bit) message (Authentication / Key distribution: Step 9). The PaC acquires HAN group 1553 key, Key-ID, AuthCounter and PAA's outgoing frame counter value and sets them on its 1554 MAC layer. 1555

- 1556 See 3.8.5.4.7 for more information about HAN-Group-Key AVP decryption.
- 1557 Security information set in MAC layer is shown below.

Wi-SUN Profile for HAN

1558	MAC layer key (LK) = HAN group key
1559	Key Index = Key-ID in HAN-Group-Key AVP
1560	Outgoing frame counter = AuthCounter 00 00 00 (Note: ' ' indicates concatenation.)
1561	Incoming frame counter for PAA = PAA's outgoing frame counter (Frame Counter Out)
1562	
1563 1564 1565 1566	If the PAA rejects the entry of a new device due to the restriction of its resources (e.g. upper limit number of macDeviceTable), the PAA returns PANA_AUTHORIZATION_REJECTED (2) to the device (PaC) in PANA authentication procedure.
1567	3.8.5.4. Key update
1568 1569 1570 1571	There are two types of key update method: Push and Pull. Push type is PAA distributes the updated key to PaC and Pull type is PaC acquires the updated key from PAA. Push type is mandatory for both PAA and PaC. Pull type is mandatory for PAA and optional for PaC.
1572	3.8.5.4.1.Distribution of updated HAN group key by PAA (Push)
1573	The sequence of key update for Push type is shown below.

1575

Figure 4.8-24 Key update sequence for Push type

1576

1577 If PAA updates a HAN group key, it adds HAN-Group-Key AVP (vendor-specific AVP) to

1578 PNR message and transmits it to each PaC by unicast manner (Push type key update: Step

1579 1). HAN-Group-Key AVP contains HAN group key, MLE Key, Key-ID, AuthCounter, and

outgoing frame counter value of PAA. HAN-Group-Key AVP shall be encrypted using

1581 Encryption-Encap AVP.

PAA shall reset the AuthCounter value to 0 in HAN-Group-Key AVP and reset Each PaC 's incoming frame counter to 0 as is the case in the HAN group key distribution. The

AuthCounter will thus become 0 and the outgoing frame counter of PAA itself and the

- incoming frame counter of each PaC will become 0x00000000.
- 1586 See 3.8.5.4.6 for more information about HAN group key generation.
- 1587 See 3.8.5.4.7 for more information about HAN-Group-Key AVP encryption.
- 1588 See 3.8.5.4.3 for more information about HAN-Group-Key AVP.
- 1589 The detail of PNR message with vendor specific AVP is shown below.

1590

Wi-SUN Profile for HAN

1591Table 4.8-45 Key update Push (Step 1): Message of PNR (ENC-ENCAP [HAN-Group-
Key] and AUTH) and P-bit1592Key] and AUTH) and P-bit

Field	Sub field	Size(octet)	Description
PANA	Reserved	2	
Message	Message Length	2	84
Header	Lengui		
	Flags	2	'R'bit=1、'P'bit=1
	Message Type	2	4=PANA-Notification-Request
	Session	4	
	Identifier		
	Sequence	4	
	Number		
PANA	Encryption-	60	HAN-Group-Key AVP is a vendor specific AVP
Payload	Encap AVP		containing HAN group key, which is defined in this document. It is encrypted and encapsulated in Encryption-Encap AVP.
	HAN-	52	
	Group-Key AVP		
	AUTH AVP	24	contains Message Authentication Code

1593

PAA initiates a new HAN group key distribution for each PaC with valid session. If PaC
 receives this PNR message from PAA, it activates the new MLE key and responses PNA
 message (Key update Push: Step 2).

When PAA finishes distribution of the new HAN group key to all PaCs with valid session, it 1597 transmits a multicast packet of encrypted MLE Update message using the new MLE-key to 1598 the link-scope all-nodes multicast address (FF02::1) (Key update Push: Step 3). Frame 1599 Counter field of auxiliary security header in this MLE message is set to zero. The 1600 cryptographic protection of MLE Update message is set to ENC-MIC-32 (Security level 5). 1601 The input values for cryptographic protection of MLE Update message are shown in Table 1602 4.8-46. The MLE Update message carries Network Parameter TLV with Parameter ID=1 1603 (PAN ID) shown in 1604

Table 4.8-47. PaC should discard the MLE Update message if different PAN ID is contained in the MLE Update message. When PAA sends this MLE Update message or PaC receives it and succeeds in decrypting it, the key update procedure finishes. Both PAA and PaCs use an old HAN group key for sending and receiving frames until completing the key update. Once they complete the key update, they change the key for transmission and reception to the new HAN group key.

- If PAA is unable to receive PNA message from PaC due to retransmission timeout, it
 terminates the session for that PaC.
- PaC must wait at least 300 seconds in all for MLE Update message to be broadcasted by PAA after responding with PNA message once. If the MLE Update message cannot be received within the period, the PaC should query a current key by Pull method first. And if the PaC cannot receive a PNA (Pull response), the PaC must assume that the valid session for itself does no longer exist.
- 1618
- 1619

Table 4.8-46 CCM* inputs for MLE Update message

Value	How to generate the Value		
a data	Source IP Address Destination IP Address Auxiliary Security Header Note) Use AUX Header in the MLE message as above "Auxiliary Security Header"		
m data	From the Command Type field to the end of TLV in the MLE message		
CCM nonce	Source Address Frame Counter Security Level Note) "Source Address" is retrieved from MAC Header, "Frame Counter" is retrieved from Aux Header of the MLE message, and "SerucirtyLevel" is retrieved from the Security Control field of the MLE message Byte order must be big endian.		
Key	Use latest MLE key which received from PAA		

1620

Table 4.8-47 The payload of MLE Update message

Field	Value	Length (bits)	Description
Initial byte	0	8	Initial byte of "0" indicates that the message is secured (encrypted and authenticated) as described in [802.15.4] and [802.15.4g].
Aux Header (6 octets)			
Security Control (1 c	octet)		
Security Level	0b101	3	Security Level = 5
Key Identifier Mode	0b01	2	Length of Key Identifier field is 1 octet.
Reserved	0b000	3	
Frame Counter (4 or	ctets)		
Frame Counter	0	32	
Key Identifier (1 octe	et)		
Key Source	-	0	No Key Source is used.
Key Index	Key-ID	8	"Key-ID" shall be same value as it to be set in Key-ID field of HAN Group Key AVP sent with previous PNR message from PAA.
Command (10 octets)			
Command Type	0x05	8	Update command to inform of changes to link parameters shared by all nodes in a network.
TLV (9 octets)			
Туре	0x07	8	"Network Parameter"
Length	0x07	8	Length of the Value field in octets.
Value (7 octet)			
Parameter ID	0x01	8	"PAN ID"
Delay	0x0	32	No delay shall be specified.
Value	Arbitrary	16	PAN ID participating currently.
MIC	Arbitrary	32	ENC-MIC-32

Note: All values in TLV are in network byte order (big endian).

PAA is allowed to perform PAA-Initiated PANA Authentication in any time and to try to re establish a PANA session for a PaC with the session terminated due to key update failure.
 (Authentication / Key distribution: Step 2 is changed to "Unsolicited PANA-Auth-Request
 (PRF-ALGO, INT-ALGO, ENC-ALGO and S-bit)" and restarts from here.)

1628

PaC has some possible recovery methods from the loss of key information in the lower layer
 and where key update procedure does not complete due to failure of receiving the PNR
 message from PAA. PaC can periodically send either PANA Ping message or Pull message

- below in detail to PAA if the session lifetime is valid, and also PaC can start key update
 procedure again from sending PCI message if the session lifetime expires.
- 1634
- 1635 3.8.5.4.2. Acquisition of HAN group key by PaC (Pull)
- 1636 The sequence of key acquisition for Pull type is shown below.
- 1637

1638 Figure 4.8-25 Key acquisition sequence for Pull type 1639 1640 PaC can request to acquire a HAN group key from PAA at any time within valid session 1641 (Pull). 1642 HAN-Group-Key-Request AVP (vendor-specific AVP) is used to request a HAN group key. 1643 In this case, the AVP contains Key-ID of current HAN group key in the PaC. HAN-Group-1644 Key-Request AVP shall be encrypted using Encryption-Encap AVP. 1645 1646 The detail of the PNR message with HAN-Group-Key-Request AVP is shown below. 1647 1648 Wi-SUN Profile for HAN 129 of 206

Wi-SUN Profile for HAN

1650	Table 4.8-48 Key update Pull (Step 1): Message of PNR (ENC-ENCAP[HAN-Group-Key
1651	Request AVP],AUTH,P-bit)

Field	Sub f	ield	Size((octet)	Description
PANA	Reserved		2		
Message	Mess	age Length	2		64
Header	Flags		2		'R'=1、'P'=1
	Mess	age Type	2		4= PANA-Notification-Request
	Session Identifier		4		
	Sequence Number		4		
PANA Payload	Encry AVP	ption-Encap HAN- Group-Key Request AVP	24	16	HAN-Group-Key Request AVP is a vendor specific AVP containing Key-ID, which is defined in this document. It is encrypted and encapsulated in Encryption-Encap AVP.
	AUTH AVP		24	1	contains Message Authentication Code

If PAA receives a PNR message with HAN-Group-Key-Request AVP (vendor-specific AVP) 1653 from a PaC, it returns a PNA message with HAN-Group-Key AVP (vendor-specific AVP). 1654 The HAN-Group-Key AVP contains HAN group key, MLE Key, Key-ID, AuthCounter, and 1655 outgoing frame counter of PAA. The HAN-Group-Key AVP shall be encrypted using 1656 Encryption-Encap AVP. If the Key-ID in the HAN-Group-Key-Request AVP is equal to that 1657 of current HAN group key, the PNA message which PAA returns does not contain HAN-1658 Group-Key AVP (PAA returns PNA message without vendor-specific AVP). 1659

- See 3.8.5.4.6 for more information about HAN group key generation. 1660
- See 3.8.5.4.7 for more information about HAN-Group-Key-Request AVP encryption. 1661
- See 3.8.5.4.3 for more information about HAN-Group-Key-Request AVP. 1662
- 1663
- 1664 The detail of the PNA message with vendor-specific AVP is shown below.

Wi-SUN Profile for HAN

1667Table 4.8-49 Key update Pull (Step 2): Message of PNA (((ENC-ENCAP[HAN-Group-
Key]),AUTH, P-bit))

Field	Sub field		Size(octet)		Description
PANA	Rese	rved	2		
Message	Mess	age Length	2		84
Header	Flags	6	2		'P'=1
	Mess	age Type	2		4= PANA-Notification-Answer
	Session Identifier		4		
	Sequence Number		4		
PANA	Encryption-Encap		60		HAN-Group-Key AVP is a vender-specific AVP containing HAN-Group-Key, which is
Payload	/				0
		HAN- Group-Key AVP		52	added in this specification. It is encrypted and then encapsulated in Encryption-Encap AVP.
	AUTH AVP		24		contains Message Authentication Code

1669

1670 If PaC receives this PNA message with HAN-Group-Key AVP from PAA, PaC sets security

information on its MAC layer. See 3.8.5.5 for more information.

1672

1674 3.8.5.4.3. Vendor-specific AVP

1675 The definition of the HAN-Group-Key AVP and the HAN-Group-Key-Request AVP are as 1676 follows.

1677 - HAN-Group-Key AVP

Octets	Fields	Remark
2	AVP code	1
2	AVP flags	1, meaning V bit, indicates Vendor-ID field is present
2	AVP length	AVP value length is 40
2	Reserved	As a rule set to 0, but don't care
4	Vendor-ID	45605
16	HAN Group Key	16 octets HAN Group Key
16	MLE Key	16 octets MLE Key
1	Key-ID	The Key-Index (one octet) of the Auxiliary security header in a MAC header. If the HAN group key is different from provided in last time, it's must set another Key-ID
1	Auth counter	One octet authorization counter
2	Reserved	As a rule set to 0, but don't care
4	Frame counter out	Four octets frame counter. This is a PAA's outgoing frame counter of the Auxiliary security header in a MAC header.

1681	0 1 2 3
1682	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1683	+-
1684	AVP Code(1) AVP Flags(V bit=1)
1685	+-
1686	AVP Length(40) Reserved
1687	+-
1688	Vendor-Id (45605)
1689	+-
1690	
1691	+ +
1692	HAN Group Key
1693	+ +
1694	
1695	+ +
1696	
1697	+-
1698	
1699	+ +
1700	MLE Key
1701	+ +
1702	
1703	+ +
1704	
1705	+-
1706	Key-ID Auth Counter Reserved
1707	+-
1708	Frame Counter Out
1709	+-
1710	

1712 - · HAN-Group-Key-Request AVP

Octets	Fields	Remark
2	AVP code	2
2	AVP flags	1, meaning V bit, indicates Vendor-ID field is present
2	AVP length	AVP value length is 1
2	Reserved	As a rule set to 0, but don't care
4	Vendor-ID	45605
1	Key-ID	It is used as the Key-Index (one octet) of the Auxiliary security header in a MAC header

1713

1714	
1715	0 1 2 3
1716	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1717	+-
1718	AVP Code(2) AVP Flags(V bit=1)
1719	+-
1720	AVP Length(1) Reserved
1721	+-
1722	Vendor-Id (45605)
1723	+-
1724	Key-ID Padding
1725	+-

1726

1727 **3.8.5.4.4.HAN group key Management**

PAA should update HAN group key by Push before expiration, before outgoing frame
counter overflows, or before incoming frame counter overflows. PAA manages both of
maximum and minimum lifetimes for the HAN group key. The maximum lifetime shall have
enough margin of the time for the frame counter overflow (one month, 30 days
recommended). Also the minimum lifetime shall have enough margin in order to prevent
frequent updating a key by the PaC continuously authentication (one hour recommended).

PAA can update the HAN group key after minimum lifetime of key update interval and shall
update the HAN group key if there is a PaC of which authentication counter reached 255.
PAA will update the HAN group key and reset the authentication counters of all PaCs to 0.
In other cases, PAA checks authentication counter of a PaC whenever it is (re)authenticated
and update the HAN group key if the authentication counter reached 255 as well.

Wi-SUN Profile for HAN

 $136 \hspace{0.1 cm} {\rm of} \hspace{0.1 cm} 206 \hspace{0.1 cm}$

In the minimum lifetime of key update interval, If PAA receives authentication request from a

PaC of which authentication counter reached 255, PAA shall refuse the request with

1741 Result-Code=PANA_AUTHORIZATION_REJECTED(2) to the PaC and shall not update
 1742 key in the period of minimum lifetime.

1743 This lifetime for the HAN group key shall start to be counted down at immediate after the 1744 PANA session against very first PaC has established successfully or the key update and 1745 distribution has been completed.

- 1746
- 3.8.5.4.5.Authentication counter (AuthCounter) management
- 1748 PAA manages the value of the authentication counter (AuthCounter) which indicates the 1749 number of PaC's authentication times.
- AuthCounter is one byte value, and effective range is 0 to 255. PAA increments its value when PAA authenticates a PaC in either 'Authentication and Authorization' phase or 'Re-Authentication' phase. PAA will notify AuthCounter value 0 of the PaC at successful authentication in the first time.
- PAA manages AuthCounter value in each PaC. The range is 0 to 255. Even if PAA
 terminates the session of the PaC, AuthCounter value of the PaC is kept until updating HAN
 group key. PAA can identify the individual PaC with its IPv6 address.
- 1757
- 1758 **3.8.5.4.6.HAN** group key generation

The length of the HAN group key is 128 bits and the key is generated with a pseudo random function by PAA (HEMS) at start-up or key-update. PAA (HEMS) sets this HAN group key to its MAC layer as a common security key for unicast and multicast. And a 128-bit MLE key is also generated with a pseudo random function by PAA in the same manner. This MLE key is used for encrypting MLE Update message in the Push type key-update.

- 1764
- 3.8.5.4.7.Encryption/decryption key generation for vendor-specific AVP
- 1766 The HAN-Group-Key AVP and the HAN-Group-Key-Request AVP are vendor-specific
- AVPs .They are transmitted after encrypted in the Encryption-Encap AVP [PANA-ENC].
- 1768 Encryption/decryption algorithm of Encryption-Encap is derived from
- PANA_PAA_ENCR_KEY/PANA_PAC_ENCR_KEY according to the [PANA-ENC]. The prf+ uses the PRF_HMAC_SHA 2_256 algorithm in the pseudorandom-number function.
- 1771

3.8.5.4.8. Network reconfiguration notification

The HEMS (PAA) uses a PTR message to notify network reconfiguration to the device
(PaC). PAA transmits PTR messages to all of PaC which has an effective session. Each
PaC which received a PTR, replies a PTA to the PAA. After receiving PTA messages from
all of PaC which has an effective session, the PAA immediately starts network
reconfiguration. The PAA can transit to network reconfiguration even if there is any noresponded PaC (the session of no-responded PaC will be terminated).

- PAA does not need to respond to the Enhanced Active Scan during waiting PTA responses
 from PaCs or incomplete network reconfiguration.
- 1781 Each device starts to do Enhanced Active Scan after sending PTA and tries to reconnect / 1782 re-authenticate to the HEMS.
- 1783
- 1784 **3.8.5.5. Encryption and Integrity check**

The MAC data frame shall be ciphered based on [802.15.4] using the latest HAN group key distributed by PAA. In order to realize both of confidentiality and integrity, ENC-MIC-32 (Security level 5) is used. The node shall discard a frame with invalid MIC.

- Key identifier mode is 0x01. Key Source in the key identifier field is not used and one-octet
 Key Index is used.
- 1790

1791 Exception of MAC security

All PANA messages (UDP destination port 716), MLE message (UDP port 19788) and IPv6
 Neighbor Solicitation (NS) (ICMPv6 Type 135 Code 0)/Neighbor Advertisement (NA)
 (ICMPv6 Type 136 code 0) messages shall not be applied MAC layer security (do not add
 MAC auxiliary security header).

- 1796
- 1797 **3.8.5.6.** Replay protection
- See 3.5.7.5 in this document.
- 1799
- 1800 3.8.6. Recommended network configurations

The HEMS and devices share a "Pairing ID" with 8-octet length, and this ID is used in the
 network discovery. There are two network discovery procedures defined in this document.
 They are "Initial setup mode" and "Normal operation mode". The "Initial setup mode" is a

 $138\,$ of $206\,$

special mode for devices joining the network in the first time. Once the devices learns their
 network (HEMS' MAC address as the Pairing ID in the Normal operation mode), the HEMS
 and devices move to "Normal operation mode". The "Normal operation mode" is used in the
 regular operation. In addition, NAI and pre-shared key for PANA/EAP are also set to each
 node in advance.

- 1809 The HEMS sets the radio channel and PAN ID in accordance with following procedure.
- 1810
- 1811 1-1: Data link (MAC) layer configuration,

Radio channel selection and PAN ID selection are conducted via ED scan and Enhanced
 Active Scan. The criteria of the radio channel selection and PAN ID selection is out of scope
 in this document.

- 1815
- 1816 **1-2: Network layer configuration**,
- The HEMS generates its own IPv6 link local address compliant to [SLAAC].
- After the HEMS as a coordinator completes the network construction, the devices attempt to connect to the HEMS in accordance with the following configurations.
- 1820
- 1821 2-1: Data link (MAC) layer configuration,
- 1822 The device identifies the HEMS network by Enhanced Active Scan.
- 1823
- 1824 **2-2: Network layer procedure**,
- 1825 The device generates its own IPv6 link local address compliant to [SLAAC].
- 1826
- **3.8.6.1.** Bootstrapping

Once the HEMS is turned on, it constructs a new network compliant to this document. This procedure is same as sub clause 3.6.6.1. And, once the device is turned on, it attempts to connect to the network that is constructed by the HEMS. This procedure is same as sub clause 3.6.6.2. Overview of network configuration and association procedure to the network is shown in **Figure 4.8-26**.

1835

Figure 4.8-26 Overview of network construction procedure

1836

1837 **3.8.6.1.1.Data link layer configuration**

Data link layer configuration of a coordinator is same as sub clause 3.6.6.1.1, but
 coordinator must set no information to its Information Elements fields in Enhanced Beacon
 Request if Active scan is employed.

In order to detect the HEMS network, the device uses an Enhanced Active Scan and sets
MLME IE to its Information Elements field which is terminated with a list termination IE
(ID=0xf). As a response to the Enhanced Beacon Request command from the device, the
HEMS should send an Enhanced Beacon that sets the same MLME IE to its Information
Elements field which is terminated with a list termination IE (ID=0xf). Association procedure
should be omitted. Other data link layer configuration of the device is same as sub-clause
3.6.6.2.1.

- 1848 Configuration information is shown in **Table 4.8-50**
- 1849

Sub-ID value	Content length	Name	Description
0x68	Variable	Unmanaged (Pairing ID)	This Sub-ID is used as the information to help the device detects the corresponding HEMS network. This Sub- ID is defined by this profile.

1851

1850

- "ScanDuration" value for Enhanced Active Scan, that is specified in [802.15.4], is
- recommended to set to 5 in order to establish the network connection in a short time.
- 1854
- 1855 **3.8.6.1.2.Network layer configuration**
- 1856 The HEMS uses IPv6 link local address only. Other network layer configuration of the 1857 HEMS is the same as sub clause 3.6.6.1.2.
- 1858 The device also uses IPv6 link local address only. Other network layer configuration of the 1859 device is the same as sub clause 3.6.6.2.2.
- Authentication procedure refers to sub clause 3.7.6.3.
- 1861
- 1862 **3.8.6.2. IP Address Detection**
- Before starting the PANA authentication procedure, the device figure out the HEMS' IPv6
 link local address from the source MAC address in the Enhanced Beacon message
 responded by the HEMS.
- ¹⁸⁶⁶ The device may omit Neighbor Discovery procedure defined in [ND].
- 1867
- 1868 **3.8.6.3.** Authentication and Key Exchange
- The device performs security setup after its data link layer and network layer configurations. In other words, the device acts as a PaC and initiates a PANA session to the HEMS (PAA)..
- 1871

Wi-SUN Profile for HAN

3.8.6.4. Application

As stated in 3.8.4.5, use ECHONET Lite as an application protocol, and support using compound data format.

- 1875
- 1876 3.8.7. Usage of credential

In HAN network, a HAN specific credential (Table 4.8-51) is defined and required to use it.
 For this purpose, this subsection defines how to use the credential in the communication
 protocols.

- 1880
- 1881

Table 4.8-51 HAN Credential

Name	Description
HAN authentication ID	Unique ID used to pair up a specific HAN device and HEMS. Character string of 24 comprised of 0~9 and A~F ASCII characters (24 octets). The first character string of eight characters is "01000000" and the following string of 16 characters (16 octets) is described in hexadecimal notation of MAC address of the HAN device (end-device or HEMS). In this profile, this is converted to the ID ([NAI] format) used by PANA (EAP-PSK) by the rule described later.
(HAN authentication) Password	Password linked to the HAN authentication ID (character string of 16 comprised of 0~9, a~z, and A~Z ASCII characters). In this profile, this is used in generating PSK, which is utilized in [EAP-PSK], by the rule described later.

- 1882
- 1883

1884 3.8.7.1. Conversion of HAN authentication ID to EAP Identifiers

Based on the 24 digit HAN authentication ID, the following rules are used to generate the EAP Identifiers (ID_S, ID_P) ([NAI]).

[NAI generation rules]

HEMS side NAI (EAP ID_S): "CTRL" + "HAN authentication ID of HEMS" (24 octets)

HAN device side NAI (EAP ID P): "NODE" + "HAN authentication ID of HAN device" (24

octets)

1887

1888

1889

Example: When HEMS HAN authentication ID is "010000001111222233334444" and HAN device HAN authentication ID is "0100000055556666677778888" HEMS side NAI (EAP ID S): "CTRL010000001111222233334444" HAN device side NAI (EAP ID P): "NODE010000005555666677778888" The MAC address in the HEMS is supposed to be "1111222233334444" The MAC address in the HAN device is supposed to be "5555666677778888" 3.8.7.2. Conversion of Password to PSK PSK used in the EAP-PSK negotiation is generated using the following rules. [PSK generation rules] Based on the Password linked to the HAN authentication ID, the following PSK generation function (PSK_KDF) is used to generate the 16 octet PSK. PSK = PSK KDF(Password) = LSBytes16(SHA-256(Capitalize(Password)) (lower order 16 octets of the output created by using SHA-256 in the hash function on the capitalized Password character string) Example: When the Password is "0123456789abcdef" PSK = LSBytes16(SHA-256("0123456789ABCDEF")) = 0x91d828cb942c2df1eeb02502eccae9e9

1890 3.8.8. Discovery and selection of the HEMS network

The HAN device performs Enhanced Active Scan with IEs field in order to detect a HEMS. 1891 MLME IE (Group ID=0x1) will be used for the Payload IEs field of the Enhanced Beacon 1892 Request sent by the HAN device, and the eight octets Pairing ID defined in both Initial setup 1893 mode and Normal operation mode will be included in the IE Contents of Sub-1894 ID=0x68(Unmanaged). When the Pairing ID stored in MLME IE of the Payload IEs matches 1895 the Pairing ID stored in the HEMS, the HEMS responds by returning the Enhanced Beacon. 1896 This Enhanced Beacon is unicast and includes the same Pairing ID in the Payload IEs field 1897 of the Enhanced Beacon Request. After confirmation that the HEMS has the same Pairing 1898 ID, the HAN device will start PANA negotiation with this HEMS. (Figure 4.8-27) 1899

1900

- 1901
- 1902
- Figure 4.8-27 HEMS discovery procedure (Initial setup mode)
- 1903
- 1904 < Initial setup mode (**Figure 4.8-27**) >

The HEMS enters the Initial setup mode before a new HAN device trying to connect to the HEMS. The HAN device uses an Enhanced Active Scan and detects the target HEMS. The Initial setup mode has a valid period and the recommended value is five minutes. During this mode, the Pairing ID shall be "HAN_INIT". The HAN device starts PANA authentication procedure with the corresponding HEMS after Enhanced Active Scan with this Pairing ID. After the expiration of the valid period, the HEMS disables the Pairing ID "HAN_INIT" for the Initial setup mode and turn into the Normal operation mode. After successful PANA
authentication in the Initial setup mode, the HAN device sets the HEMS' MAC address as
the Pairing ID in the Normal operation mode. If PANA authentication failed, the HAN device
tries to find the corresponding HEMS until PANA authentication succeeds. The HAN device
can use an Enhanced Active Scan again to the all radio channels if it finds no HEMS on all

- channels or authentication fails.
- 1917

1918

1919

Figure 4.8-28 HEMS discovery procedure (normal mode)

1920

1921 < Normal operation mode (Figure 4.8-28) >

1922 The HEMS' MAC address is used as the Pairing ID in the Normal operation mode.

When the HAN device detects that the session is being expired, the HAN device may
proceed Enhanced Active Scan to discover HEMS. In this case, it is not desired that the
HAN device continues frequent Enhanced Active Scan for a long time from radio traffic
perspective. When the HAN device continues the Enhanced Active Scan for more than 5
minutes, after that, the HAN device is recommended to set at least 3 minutes interval
between each Enhanced Active Scan.

Once the HAN device connects to a HEMS, the HAN device should calculate the IPv6 link
local address of the HEMS from the source MAC address of Enhanced Beacon message.
And the HAN device starts a PANA authentication with its NAI and PSK which are preshared. The HEMS authenticates the HAN device(s) based on the NAI and PSK. The

HEMS distributes a HAN group key for which the HEMS and the HAN device share the
 MAC layer encryption key after successful authentication.

After sharing the MAC layer encryption key, the communication between the HEMS and the HAN device(s) is encrypted by the HAN group key. The HEMS conducts a service discovery procedure and sends some commands to the HAN device using ECHONET Lite protocol, and the HAN device(s) can run some operations based on the requests and respond their execution results to the HEMS.

3.9. Recommended usage for multi-hop home area network employing relay device

1943 **3.9.1. Overview**

1944 This clause clarifies the recommended usage in the case the relaying is employed by the 1945 multiple devices that are shown in 3.8. **Figure 4.8-29** shows a typical example assumed 1946 network topologies.

1947

1948

Figure 4.8-29 Network topology for HAN employing relay among devices

1949 1950

Since this clause shows only the required amendment from the previously clarified
 specifications, it is recommended that authors should refer the existing 3.8 for the other
 specifications as necessary.

1954

- 1955 3.9.1.1. Installation order of HAN-relay-device and HAN-end-device
- In the situation of Figure 4.8-30 device A is as HEMS, device B with relaying capability is
 named HAN-relay-device and device C without relaying capability is named as HAN-end device. In the network topology assuming relaying as shown in Figure 4.8-30, B is assumed
 to be installed before C. Details is described in 3.9.3.3.

1960

Wi-SUN Profile for HAN

 $147 \hspace{0.1 cm} {\rm of} \hspace{0.1 cm} 206 \hspace{0.1 cm}$

HAN Working Group

ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory, O:Option)	Support (Y:Yes, N:No, O:Option)
MLF24	Relay support in HAN			0
MLF24.1	MHR management for forwarding			MLF24:Y
MLF24.2	Frame counter management			MLF24:Y
MLF24.3	Multicast transmission			MLF24:Y
MLF24.4	IEs for relay in HAN			MLF24:Y

Table 4.8-52 Amendments in MAC sub-layer functions

1975

1974

1976 **3.9.3.1.1.MHR** management for forwarding

The device supporting this function shall conduct relaying of the MAC payload by the MAC
 layer management entity by updating Source/Destination addresses in the MAC header
 according to the IE as described later.

1980

1981 **3.9.3.1.2.Frame counter management**

The device supporting this function shall realize the frame counter information exchange between HAN-end-device and the HAN-relay-device that is on the next hop towards the PAN coordinator after the HAN-end-device is authorized via PANA.

1985

- 1986 3.9.3.2. MAC frame format
- 1987 This clause shows the amendments in MAC frame format.
- This profile employs the [802.15.10] Short Route Announcement (SRA) IE and the Short L2R Routing (SLR) IE to support HAN relay.

3.9.3.2.1.Capability Notification IE (CN IE)

⁶Relay-endpoint' flag and 'HAN-relay-device' flag in CN IE are used to exchange capability
 of relay enabled HAN. At the sending of this IE, the sender of Enhanced Beacon Request
 command must set flags for all the available functions to this IE as request. On the other
 hand, the sender of Enhanced Beacon must set flags for the functions to use in response to
 the CN IE in the EBR. The following shows an example to handle relay and sleep function
 capabilities change.

- i) If the sender of EB is HEMS or HAN-end-device which supports the relay function,
 Relay-endpoint (bit 6) in the sending EB shall be set to "1". Otherwise, it must be
 set to "0".
- ii) If a HAN-relay-device received EBR but it has CN IE which sets all flags to "0", or no
 CN IE attached, the HAN-relay-device must not respond with EB to the requesting
 device.
- 2003
- 2004 **3.9.3.2.2.DATA frame**

Differently from the definition in 3.8.3., Payload IE deployments of SLR IE as described later are assumed. The Payload IEs shall be included in the portion of the data frame to be encrypted together with the data payload.

- 2008
- 3.9.3.2.3.Enhanced beacon frame
- 2010 Similarly to the definition in 3.8.3., Payload IE deployment of SRA IE is assumed.
- 2011

HAN Working Group

2012 **3.9.3.2.4.IEs for relay in HAN**

2013

The SRA IE and the SLR IE are depicted in Figure 4.8-31 and

Bits: 0-10	11-14		15	Octets: Varia	ble	
Length	Group ID (MLM)	E IE) Type =	= 1 (Payload)	Sub IE		
Bits: 0-7	8-14		15	Octets: Variable		
Length	Sub ID	Туре	= 0 (Short)	IE Content		
	Octets:2/8	2/8	1	0/1	0/Variable	
	Source Address	Destination Address	L2R Sequence Number	Number of Intermediate Address	Intermediate Address List	

2014

2015

Octets: 0/2/8	•••	Octets: 0/2/8
Intermediate hop 1		Intermediate hop N

2016

2017 **Figure 4.8-32** respectively.

The MLME IEs to be defined in this clause shall be nested within single MLME IE together with the other MLME IEs to be conveyed with same frame if existing.

The contents of these IEs should be aligned to little endian byte order.

2021

- The SRA IE (Sub-ID=0x3A) is included in the Enhanced beacon frame that is transmitted by Coordinators except for PAN coordinators, in order to indicate the addresses of HANrelay-device(s) as well as the PAN coordinator. Details of its fields are shown below.
- 2025 (1) Vendor Specific Usage field

This field indicates if the following field represents the Sequence Number of the SRA IE (0) or if it is vendor specific. This field is set to 1 to specify the use of the following field according to the HAN relay requirements.

2029 (2) SN or Vendor Specific field

2030 Since the Vendor Specific Usage field is set to 1, this field is defined as vendor specific for 2031 HAN Relay usage. The first 4 bits are reserved. The bits 5 to 7 contain the Priority field. This 2032 field indicates the priority of the HAN-relay-devices that transmits the IE in the Enhanced 2033 beacon. In this specification, this Priority field can be ignored by received node (HAN-end-2034 device).

- 2035 (3) Source Address field
- 2036 This field contains the address of the PAN coordinator.
- 2037 (4) Number of Intermediate Addresses field
- This field indicates the number of intermediate HAN-relay-devices to the PAN coordinator that excludes the initiating device of the IE in order starting next to the HAN-end-device.
- 2040 (5) Intermediate Address List field

This field indicates the addresses of intermediate HAN-relay-devices to the PAN coordinator that excludes the initiating device of the IE. The indicated addresses are shown in the subfields of Intermediate hop 1-N.

The addressing mode used in the SRA IE shall be the same address mode as in the MHR. This IE can support up to 12 hops if EUI-64 addresses are used, and up to 49 hops if 16-bit addresses are used.

	Bits: 0-10		11-14		15	Oct	tets: Va	riable
	Length	Group I	D (MLME IE)	Туре	= 1 (Payload)		Sub II	E
2048								
	Bits: 0-7		8-14		15	Oct	tets: Va	riable
	Length	5	Sub ID	Тур	e = 0 (Short)		IE Cont	ent
2049								
	Bits:	0	1-7		Octet:2/8	1		0/Variable
	Vendor S Usag		SN or Veno Specific		Source Address	Number of Interme Addresses	diate	Intermediate Address List
2050								
	Bits:	1-4	5-7			Octets: 0/2/8	•••	Octets: 0/2/8
	Reser	ved	Priority			Intermediate hop 1		Intermediate hop N

2051

2052

Figure 4.8-31 SRA IE

2053

The SLR IE (Sub-ID=0x3D) is included in several frames such as data frame and indicates Source/Destination information of end-to-end devices of the frame payload. This IE also indicates the addresses of the intermediate HAN-relay-devices that relay the frame towards the PAN coordinator according to the SRA IE received during Enhanced Active Scan. Details of its fields are shown below.

(1) The Source Address field contains the address of the device originating the frame.

- (2) The Destination Address field contains the address of the destination device of theframe.
- 2062 (3) L2R Sequence number field
- This field indicates the identifier of the frame payload. By referring the value of this field, duplicated frames can be discarded in the multicast transmission.
- 2065 (4) Number of intermediate Address field

This field indicates the number of intermediate HAN-relay-devices to the PAN coordinator that excludes the initiating device of the IE in order starting next to the HAN-end-device.

The Number of Intermediate Address field is always present, and if it is set to zero, the Intermediate Address List field is omitted.

2070 (5) Intermediate Address List field

This field indicates the addresses of intermediate HAN-relay-devices to the PAN coordinator that excludes the initiating device of the IE. The indicated addresses are shown in the subfields of Intermediate hop 1-N.

2074

2078 2079

2077

2075

2076

Wi-SUN Profile for HAN

 $154~{\rm of}~206$

3.9.3.3. Examples of typical device operation

Figure 4.8-33 shows an example of relay operation in the MAC layer. At turned on, the 2081 HEMS starts the PAN as the PAN coordinator, defines the employed channel according to 2082 the situation. After that, a HAN-relay-device named as device A is turned on and finds the 2083 HEMS via the scan procedure. Here, HEMS responds to the Enhanced beacon request 2084from device A by returning an Enhanced beacon without SRA IE. That is, frame exchanges 2085 between device A and HEMS is conducted without exploiting relay in MAC layer. Then, in 2086 the Figure 4.8-33, a HAN-end-device named as device B is turned on. Here it should be 2087 noted that device A is assumed to be a coordinator. While device B can also find device A 2088 after its scan procedure in the similar manner, device A returns an Enhanced beacon with a 2089 SRA IE since device A is not the PAN coordinator and needs to show the relay route to the 2090 PAN coordinator. After that, device B can send a frame whose final destination is HEMS by 2091 constructing it as a MAC frame including a suitable SLR IE and initially addressed to device 2092 A according to the received SRA IE information. At receiving the frame, device A relays the 2093 frame by updating the Source/Destination addresses in the MAC header according to the 2094 SLR IE in MAC layer. As a result, the frame initiated on device B reached to HEMS through 2095 device A. Since HEMS acquires the relay route to device B as well as confirms the 2096 existence of device A and B, which is required on the higher layer operations, by reversing 2097 the addresses in the Intermediate hops field in the received SLR IE, HEMS can realize the 2098 relayed transmission to device B hereafter. 2099

2101

Figure 4.8-33 Example of relay operation in MAC layer

2103

- 3.9.3.3.1.Examples of operations in case HAN-relay-device is installed after HAN-end device
- When a HAN-relay-device is newly installed in the situation a HEMS and a HAN-end-device are operating a network, the HAN-end-device shall reset after installing the HAN-relaydevice.
- 2109

3.9.4. Interface part

2111 **3.9.4.1. Overview**

The interface of a home area network employing relay devices for ECHONET Lite over IPv6 shall be compliant with clause 3.8.4 unless otherwise specified in the following sub clauses.

- 2114
- 3.9.4.2. Adaptation layer
- See 3.8.4.2 in this document.
- 2117
- 3.9.4.2.1.Fragmentation
- See 3.8.4.2.1 in this document.
- 2120
- 3.9.4.2.2.Header compression

The 6LoWPAN Header compression requirements shall be compliant with clause 3.8.4.2.2, except identification method of source destination IP addresses at the final destination. When final destination node of 6LoWPAN packet needs to identify or reproduce the source and/or destination IP address of receiving 6LoWPAN packet, it must be done based on original source address and final destination address conveyed with theSLR IE, instead of source and destination addresses contained in the MHR.

- 2128
- 3.9.4.2.3.Neighbor Discovery
- See 3.8.4.2.3 in this document
- 2131
- **3.9.4.3. Network layer**
- See 3.8.4.3 in this document.
- 2134
- 3.9.4.4. Transport layer
- See 3.8.4.4 in this document.

2137	
2138	3.9.4.5. Application layer
2139	See 3.8.4.5 in this document.
2140	
2141	3.9.5. Security configuration
2142	3.9.5.1. Overview
2143 2144	HEMS and devices shall conform to specification described in 3.8.5.1 in this document unless otherwise described in this clause.
2145	
2146	3.9.5.2. Authentication
2147 2148	HEMS and devices shall conform to specification described in 3.8.5.2 in this document unless otherwise described in this clause.
2149	
2150	3.9.5.2.1.PANA
2151 2152	3.8.5.2.1 shall be supported, additionally assuming that the PAA-PaC session is supported by the relay in MAC as in 3.9.3, as necessary.
2153 2154 2155 2156	PANA termination sequence between HEMS and HAN-relay-device is just run in regular manner. HAN-relay-device should keep at least 15 (=16 – relay device itself) routing information entries at same time (The number '16' is same as the minimum capacity for PaCs defined in 3.8.5.2.1).
2157	

- 2158 **3.9.5.2.2.EAP**
- 3.8.5.2.2 shall be supported.
- 2160
- 3.9.5.3. Authentication and key distribution

The specification defined in 3.8.5.3 shall basically be supported in this section, so there is no difference to that on authentication and encryption key distribution to be done between HEMS and HAN-relay-device. Additionally, HAN-relay-device shall be allowed to not accept any communication to be requested from HAN-end-device while HAN-relay-device is
 ongoing authentication and key distribution process.

The specification below shall be applied to these procedures to be done between HEMS and HAN-end-device.

2169

- 2170
- Figure 4.8-34 Authentication and key distribution sequence for HAN-end-device
- 2172
- In the above sequence chart, any message to be exchanged between HEMS and HAN-end
 -device shall be forwarded via HAN-relay-device.

Wi-SUN Profile for HAN

 $159 \hspace{0.1in} {\rm of} \hspace{0.1in} 206 \hspace{0.1in}$

Regarding the procedure from step 1 to step 7, except that all the messages to be
exchanged are forwarded by the HAN-relay-device, it shall be identical to usual procedures
of authentication and keys distribution to be done between ordinary HEMS and devices
unsupporting the relay function, but subsequent procedure shall be as follows.

- 1) Based on the method described in 3.8.5.3.3, HEMS derives outgoing frame counter value for HAN-end-device from the authentication counter value relevant to HAN-end-device, stores the derived counter value and HAN-end-device's IPv6 address into Frame Counter Notification AVP, and sends PNR message containing this AVP to HAN-relay-device (Figure 4.8-34 Step 8). HEMS extracts frame counter value from the Frame Counter Notification AVP received from HAN-relay-device, and sets this value as the incoming frame counter relevant to HAN-relay-device.
- 2186
 2) HAN-relay-device generates Frame Counter Notification AVP that contains own IPv6
 address and outgoing frame count, attaches this AVP to PNA message, and then send it
 to HEMS (Figure 4.8-34 Step 9). HAN-relay-device extracts frame counter value from
 the Frame Counter Notification AVP received from HEMS, and sets this value as the
 incoming frame counter relevant to HAN-end-device.
- 3) Then HEMS sends a PAR message to HAN-end-device (Figure 4.8-34 Step 10). Here, the counter value notified by prior PNA message from HAN-relay-device is copied to the Frame Counter Out field in the Frame Counter Notification AVP which is attached to this PAR message. By means of this, HAN-end-device can obtain latest value for incoming frame counter relevant to HAN-relay-device.
- 4) In response to this, HAN-end-device responds HEMS by sending PAA message (Figure 4.8-34 Step 11).
- 5) Then HAN-end-device derives its own outgoing frame counter value according to the authentication counter value notified by HEMS (see 3.8.5.3.3), and sets it into its own configuration, together with key information, and incoming frame counter value relevant to HAN-relay-device that were received from HEMS.
- 2202
- 2203 The detail of Frame Counter Notification AVP is specified in "3.9.5.4.3 Vendor-specific
- AVP". PNR message that contains this vendor-specific AVP shall be specified as follows.

2205Table 4.8-53 Frame Counter Notification (Step10): Message of PNR (Frame Counter,2206AUTH)

Field	Sub field	Size(octet)	Description
PANA	Reserved	2	
Message	Message Length	2	64

Header	Flags	2	'R'bit=1、'P'bit=1
	Message Type	2	4=PANA-Notification-Request
	Session Identifier	4	
	Sequence Number	4	
PANA	Encryption-	40	Frame Counter Notification-
Payload	Encap AVP		AVP is a Vendor-specific AVP which is introduced to this revision. It shall be
	Frame- Counter- Notification AVP	32	encapsulated with Encryption- Encap-AVP after encrypted.
	AUTH AVP	24	AVP containing Message Authentication Code. Message

2207

- 3.9.5.3.1.Authentication request by PAA
- 3.8.5.3.1 shall be supported.
- 2210
- 3.9.5.3.2. Authentication response by PaC
- 3.8.5.3.2 shall be supported.

2213

- 3.9.5.3.3.Distribution of HAN group key
- 2215 When PaC is a HAN-relay-device, 3.8.5.3.3 shall be supported.
- When PaC is a HAN-end-device, a part of contents in Group Key Distribution AVP differ, but
 the other part shall support 3.8.5.3.3. Table 4.8-54 shows content of Group Key Distribution
 AVP.

2219

Table 4.8-54 Field values in Group Key Distribution AVP

|--|

Fields in Group Key Distribution AVP	HAN-relay-device	HAN-end-device
Group Key	Group Key	
Group Key ID	Key Identifier for Group Key	
Auth Counter	Authentica	ation Counter
Frame Counter Out	Outgoing Frame Counter of PAA	Incoming Frame Counter for HAN-relay-device

2220

- 3.9.5.3.4. Response to HAN group key reception by PaC
- 2222 When PaC is a HAN-relay-device, 3.8.5.3.4 shall be supported in this section.

2223 When PaC is a HAN-end-device, it differs that Group Key Distribution AVP attached to PAR 2224 message from PAA contains Incoming Frame Counter value for HAN-relay-device instead 2225 of Outgoing Frame Counter value of PAA. Therefore security related information to be set to 2226 MAC layer shall be as follows.

- 2227
- LK = Group Key
- Key ID = Key Identifier for the Group Key
- 2230 Outgoing Frame Counter = Auth Counter || 00 00 00
- Incoming Frame Counter for PAA = Incoming Frame Counter for HAN-relay-device
- 2232
- **3.9.5.4. Key update**
- 2234 3.9.5.4.1.Distribution of updated HAN group key by PAA (Push)

3.8.5.4.1 shall be supported. As far as it is assured that frame counter of HEMS and all
devices can be set to zero simultaneously at this moment, extra process does not need to
be added.

3.9.5.4.2. Acquisition of HAN group Key by PaC (Pull)

The specification defined in 3.8.5.4.2 shall basically be supported in this section. However, when PaC is a HAN-end-device, a part of contents in HAN Group Key AVP shall be different. See "**Table 4.8-54 Field values in Group Key Distribution AVP**" about the detail.

- 2244
- 3.9.5.4.3. Vendor-specific AVP
- 2246 Other than AVPs defined in 3.8.5.4.2, the Frame Counter Notification AVP defined below 2247 shall be used in relay network.
- 2248

2254

2274

• Frame-Counter-Notification AVP

When HEMS must notify incoming frame counter value for the HAN-end-device to the HANrelay-device, this AVP shall be attached to PANA Notification Request message. HANrelay-device that received PNR message containing this AVP shall respond the HEMS by sending PNA (AUTH) message.

2234	
2255	0 1 2 3
2256	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2257	+-
2258	AVP Code(3) AVP Flags(1)
2259	+-
2260	AVP Length(4) Reserved
2261	+-
2262	Vendor-Id (45605)
2263	+-
2264	IPv6 address (1 st 4octets)
2265	+-
2266	IPv6 address (2 nd 4octets)
2267	+-
2268	IPv6 address (3 rd 4octets)
2269	+-
2270	IPv6 address (4 th 4octets)
2271	+-
2272	Frame Counter Out
2273	+-

Figure 4.8-35 shows the Pull sequence. The HEMS shall contain its incoming frame counter value in the Frame-Counter-Notification (FCN) AVP of the PANA Notification Request message to the HAN-relay-device (step2). HAN-relay-device shall contain its outgoing frame counter value in the Frame-Counter-Notification AVP of the PANA Notification Answer message to the HEMS (step3). The HEMS shall contain the outgoing frame counter value of the HAN-relay-device in the HAN-Group-Key AVP to the HAN-end-device (step4).

Wi-SUN Profile for HAN

 $163 \hspace{0.1 cm} {\rm of} \hspace{0.1 cm} 206 \hspace{0.1 cm}$

2301	
2302	3.9.5.4.8.Network reconfiguration notification
2303 2304 2305 2306 2307	The specification defined in 3.8.5.4.8 shall basically be supported in this section. Regarding the relation between HAN-relay-device and HAN-end-device, 3.8.5.4.8 shall be supported as well. For example, while HAN-relay-device as PaC is under ongoing Enhanced Active Scan against PAA, the HAN-relay-device may ignore another Enhanced Active Scan from HAN-end-device on the other side until it as PaC receives the response from the PAA.
2308	
2309	3.9.5.5. Encryption and Integrity check
2310	3.8.5.5 shall be supported.
2311	
2312	3.9.5.6. Replay protection
2313	3.8.5.6 shall be supported.
2314	
2315	3.9.6. Recommended network configurations
2316	Follow the 3.8.6.
2317	
2318	3.9.6.1. Bootstrapping
2319	Follow the 3.8.6.1 on all devices including a HAN-relay-device and a HAN-end-device.
2320	
2321	3.9.6.1.1.Data link layer configuration
2322 2323	The HEMS shall include Pairing ID and Capability Notification IE when it returns an Enhanced Beacon.
2324 2325 2326	A HAN-relay-device shall include a SRA IE as well as a Pairing ID as MLME IEs when it returns an Enhanced Beacon. A device which associates with the HAN-relay-device stores the SRA IE information as a route to the HEMS.
2327	MAC association procedure should be omitted.
2328	Data link configuration except above terms follows the 3.8.6.1.1.

Wi-SUN Profile for HAN

 $165\,$ of $206\,$

- 2329
- 3.9.6.1.2. Network layer configuration

The HEMS, a HAN-relay-device and a HAN-end-device use IPv6 link local address only. Network layer configuration follows the 3.8.6.1.2. with the exception that if a HAN-enddevice which needs a HAN-relay-device to relay frames to the HEMS (PAN coordinator) performs IPv6 ND before PANA session, a HAN-end-device should send a frame prior to IPv6 ND to allow HEMS to send a unicast frame to the device as follows.

2336 - A MAC frame with the SLR IE

Source Address in MHR	The HAN-end-device
Destination Address in MHR	HEMS (PAN coordinator)
Intermediate Address in SLR IE	Necessary the HAN-relay-device(s)
MAC payload	6LoWPAN dispatch with NALP (0x00 in the fist byte)*

*: NALP is defined in [6LOWPAN].

- 2337 2338
- Authentication procedure is described in the 3.8.6.3.
- 2340
- 3.9.6.2. IP Address Detection

Follow the 3.8.6.2, except that the IP address should be obtained from its SRA-IE not from its MAC header when an EB with SRA IE is included in the received frame.

- 2344
- 3.9.6.3. Authentication, Key Exchange, Route information notification to the HEMS
- The device performs security setup after data link layer and network layer configurations. In other words, the device acting as a PaC initiates a PANA session to the HEMS acting as the PAA.
- A device which doesn't communicates with the HEMS directly but communicates with a
 HAN-relay-device shall set a SLR IE in a frame when it transmits a PCI message. The route
 information from the device to the HEMS shall be stored in the SLR IE.
- When the HEMS sends a PANA message to a device which doesn't associated with the
 HEMS directly, the HEMS shall set aSLR IE in the frame as route information from the
 HEMS to the device. TheSLR IE is generated from the route information stored in theSLR IE
 in the PCI message from the device.

2356 2357 2358 2359	A device which relays a message between the HEMS and the joining device refers to the SLR IE in the received frame and forwards the frame with replacing the MAC destination address to the next hop address and the MAC source address to its address. IEs and PANA message fields shall not be changed.
2360 2361	A PANA message exchanged between the HEMS and a device which associates with the HEMS directly shall not include a SLR IE.
2362	
2363	3.9.6.4. Application
2364	Follow the 3.8.6.4.
2365	
2366	3.9.7. Usage of credential
2367	Use the HAN authentication ID and Password described in the 3.8.7.
2368	
2369	3.9.7.1. Conversion of HAN authentication ID to EAP Identifiers
2370	NAI is generated according to the 3.8.7.1.
2371	
2372	3.9.7.2. Conversion of Password to PSK
2373	PSK is generated according to the 3.8.7.2.
2374	
2375	3.9.8. Discovery and selection of the HEMS network

A HAN device performs Enhanced Active Scan using IEs field to detect the HEMS or a 2376 HAN-relay-device. MLME IE (Group ID=0x1) will be used for the Payload IEs field of the 2377 Enhanced Beacon Request sent by the HAN device. The eight octets (Pairing ID) defined in 2378 both initial mode and normal mode will be included in the IE Contents of Sub-ID=0x68 2379 (Unmanaged) and also the appropriate sender's capability set according to 3.8.3.1 will be 2380 included in the IE Contents of Sub-ID=0x67 (Unmanaged) (Capability Notification IE). When 2381 the Pairing ID stored in MLME IE of the Payload IEs matches the Pairing ID stored in the 2382 HEMS or a HAN-relay-device, the HEMS or the HAN-relay-device responds by returning the 2383 Enhanced Beacon. This Enhanced Beacon is unicast and also includes the same Pairing ID 2384 and Capability Notification IE which is set according to 3.8.3.1 in the Payload IEs field. After 2385 confirmation that the HEMS or the HAN-relay-device has the same Pairing ID and the 2386

appropriate capability, the HAN device will start PANA negotiation with the HEMS or the
 HAN-relay-device.

2389

2390 < Initial setup mode >

The HEMS or a HAN-relay-device is set to initial setup mode in advance before a new HAN 2391 device tries to connect to the HEMS or the HAN-relay-device. The HAN device uses an 2392 enhanced active scan feature and detects the target HEMS or the target HAN-relay-device. 2393 The HEMS or the HAN-relay-device initial mode has a valid period and its suggested value 2394 is five minutes. During the time, Pairing ID is set to the fixed strings "HAN INIT". The HAN 2395 device starts PANA authentication process with the corresponding the HEMS or the HAN-2396 relay-device after enhanced active scanning by Pairing ID. After the valid period expires, the 2397 HEMS or the HAN-relay-device invalidates the Pairing ID "HAN INIT" for initial mode and 2398 turns into normal mode. When authentication succeeds, the HAN device set the HEMS's or 2399 the HAN-relay-device's MAC address for Pairing ID. If authentication fails, HAN device tries 2400 to find the corresponding HEMS or HAN-relay-device until PANA authentication succeeds. 2401 The HAN device can use an enhanced active scan again to the all channels if it finds no 2402 HEMS or HAN-relay-device on all channels or authentication fails. 2403

- 2404
- 2405 < Normal operation mode >

The HEMS or a HAN-relay-device set its MAC address for Pairing ID in normal operation mode to be ready for scanning from a device by enhanced active scan. HAN-relay-device would have two Pairing IDs, one is its parent device MAC address and the other is its own MAC address.

2410

Once a HAN device connects to the HEMS or a HAN-relay-device, HAN device should 2411 calculate the IPv6 link local addresses of the HEMS and the HAN-relay-device from the 2412 MAC source address or the SRA IE of Enhanced Beacon message. And HAN device 2413 requests the HEMS to authenticate by [PANA] using NAI and authentication key, which are 2414 pre-shared. The HEMS establishes PANA session with the HAN device, and the HEMS 2415 authenticates HAN device based on NAI and authentication key. The HEMS delivers HAN-2416 Group-Key for which the HEMS and the HAN device share the MAC layer encryption key 2417 after successful authentication. Furthermore, a device which connected to a HAN-relay-2418 device obtains a MAC security transmit frame counter of the HAN-relay-device according to 2419 the 3.9.5.3 and set the counter value to the Frame Counter of the associated Device 2420 Descriptor of the MAC layer. 2421

After sharing the MAC layer encryption key, the HEMS can communicate with the HAN device, by using encrypted messages. The HEMS conducts service discovery procedure and sends some commands to the HAN device using ECHONET Lite protocol, and the HAN device can do some operations based on the requests and respond execution results to the HEMS.

2428

3.9.9. Route Information

Following the procedure described in the 3.9.6.3, a HAN-relay-device notifies a HAN device of route information to the HEMS by using a SRA IE in an Enhanced Beacon and the device stores the route information. The HAN device sets the route information to the SLR IE when it sends a unicast frame to the HEMS, including the period of PANA authentication. If the number of intermediate records exceeds supported number, a device shall ignore and discard the frame.

The HEMS obtains route information to the HAN device by referring the SLR IE in the received frames during PANA authentication and stores the route information. During PANA authentication or later, the HEMS sets the route information to the SLR IE when it sends a unicast frame to the HAN device. In case PANA authentication fails, the HEMS discards the route information. If the number of records of intermediate node exceeds supported number, a device shall ignore and discard the frame.

After PANA authentication, the HEMS and the HAN device shall not update the route information which they have stored during PANA authentication. In case route change becomes necessary, when such like replacing the HAN-relay-device, scanning and PANA authentication shall be carried out again. In that case, the HEMS needs to keep the new route information to the same device temporarily during PANA authentication, and only if the PANA authentication succeeds, the old route information is replaced with the new one.

2448

3.9.10. Unicast Transmission

The HEMS and a HAN device shall directly transmit a frame without SLR IE if HAN-relaydevice is not used to send the frame to a final destination. The HEMS and a HAN device shall transmit a frame withSLR IE if HAN-relay-device(s) is used to send the frame to a final destination.

When a HAN-relay-device receives a frame which has SLR IE, it forwards the frame after
putting its own MAC address to the source MAC address field and the next hop address to
the destination MAC address field. The next hop address is determined by referring the SLR
IE in the received frame. A HAN-relay-device shall not change IEs and frame payload in the
frame.

Note that when an encrypted MAC frame is received, a HAN-relay-device decrypts the frame first, and then changes the MAC header address fields, encrypts the updated frame and forwards the encrypted frame to the next hop.

- 2462
- 3.9.11. Multicast Transmission

When a device wants to transmit a frame to a multicast group, the frame is treated as a broadcast frame by the MAC sublayer and is filtered by the recipients at the next higher layer.

- 2467
- 3.9.11.1. Transmission by the HEMS

When the HEMS wants to transmit a multicast frame, it shall transmit the frame twice. The first frame is transmitted without the SLR IE in order to allow reception by devices that do not support relay. The second frame is transmitted with the SLR IE in order to allow HANrelay devices to forward the multicast frame.

If the network solely comprises devices of the same type, i.e. supporting or not supporting
 relay, the HEMS transmits the multicast frame only once with or without the SLR IE
 respectively. The determination of whether devices of the same type are deployed in the
 network is out of the sscope of this profile.

- 2477
- 3.9.11.2. Transmission by HAN-relay and HAN-end devices

2479 When a HAN-relay or HAN-end device supporting relay wants to transmit a multicast frame, 2480 the SLR IE is inserted in the frame.

If a HAN-end device that does not support relay wants to transmit a multicast frame, the
 frame shall be sent without an SLR IE.

When the HEMS, a HAN-relay, or a HAN-end device supporting relay transmits a multicast frame with the SLR IE, the Source Address field is set to the address of the originator and the Destination Address field is set to the broadcast address. The Number of Intermediate Addresses field is set to 0 and the Intermediate Address List field is omitted. The Source Address and the Destination Address fields of the MHR are also set to the originator's address and the broadcast address respectively.

3.9.11.3. Multicast frame reception

- 2491 When device receives a multicast frame:
- If it is a HAN-end-device or the HEMS, it removes the MHR and the SLR IE and delivers the frame to
 the next higher layer.
- If it is a HAN-relay-device, it leaves the SLR IE intact and sets the source address of the MHR to its own address. The frame is then forwarded.
- The source device and any device receiving the frame records the Sequence Number and the Original source address found in the SLR IE. If a frame with the same Sequence Number and Original source address is received, the frame is dropped in order to avoid duplicate forwarding.
- An appropriate jitter is applied to each multicast frame transmission in order to reduce the number of possible collisions.

3.10. Recommended usage for home area network among devices with an extension of sleeping end device support

2504 **3.10.1. Overview**

This clause clarifies the recommended extension to the usage in constructing network for 2505 ECHONET Lite over IPv6 communication between a HEMS and multiple devices described 2506 in 3.8. A HEMS with the sleeping end device (e.g. a battery operated device like a gas 2507 meter) support extension described in this clause shall communicate with a device 2508 described in 3.8 in same manner described in 3.8. Compliant nodes to this clause 2509 constructs a network with the HEMS as a central coordinator as shown in Figure 4.8-36. A 2510 HAN consists of HEMS (PAN coordinator) and devices or/and sleeping end devices. In the 2511 relay supported HAN specified in 3.9, not all coordinator shall support sleeping end device 2512 but a coordinator which needs to connect to sleeping end device directly shall support this 2513 functionality. For example, if a PAN coordinator supports sleeping end device and relay 2514 devices don't support it, a sleeping end device only connect to the PAN coordinator. If a 2515 PAN coordinator doesn't support and one of relay devices support this extension, a sleeping 2516 end device is able to connect only to the relay device which supports the extension as 2517 example illustrated in Figure 4.8-37. 2518

2528

2529 3.10.3. MAC part

This clause shows amendments for HAN supporting a sleeping end device in MAC layer. What is specified here supersedes 3.8 and 3.9 but other specifications should follow 3.8.3 and 3.9.3 respectively.

2533

- 3.10.3.1. MAC sub-layer function
- **Table 4.8-55** shows amendments in MAC sub-layer functions.

Table 4.6-55 Amendments in MAC sub-layer functions				
ltem number	Item description	Reference section in standard	Status in standard (M:Mandatory, O:Option)	Support (Y:Yes, N:No, O:Option)
MLF25	Sleeping End Device support in HAN	3.10 in this document	New in this usage	0
MLF25.1	Transmission of Capability Notification IE in EBR and reception of Capability Notification IE in EB		New in this usage	MLF25, FD2:Y
MLF25.2	Transmission of Capability Notification IE in EB and reception of Capability Notification IE in EBR		New in this usage	MLF25, FD1:Y
MLF25.3	Multicast Transaction Handling for the Indirect Transmission		New in this usage	MLF25, FD1: Y
MLF 1.1	Purge data	[802.15.4] 6.3.4, 6.3.5	FD1:M FD2:O	MLF25, FD1:Y FD2:N
MLF13	Store one transaction	[802.15.4] 5.1.5	FD1:M	MLF25, FD1:Y FD2:N
MF4.4	Data request	[802.15.4] 5.2.2.4, 5.3.4	Transmitter: M Receiver: FD1:M	Transmitter: MLF25, FD2:Y Receiver: MLF25, FD1:Y

Table 4.8-55 Amendments in MAC sub-layer functions

2538

2537

- 2539 3.10.3.1.1. Coordinator requirement for the handling indirect transmission
- This clause describes what the coordinator which supports sleeping end device connectivity needs to suffice.
- 2542
- The coordinator needs to support capability exchange specified in 3.10.8.
- The coordinator supporting sleeping end device shall support indirect transmission, which is enabled by supporting "Purge data" functionality, a frame buffer for "Store one transaction" and handling "Data request" format. Acknowledgment frame specified in 3.6.3.2.2 shall support "pending bit" to inform existence of a stored frame in the buffer to sleeping end device when it asked by "Data request" command frame.
- 2549 When the next higher layer of MAC layer in the coordinator sends a frame, it needs to 2550 invoke MCPS-DATA.request as follows.
- If the sending frame is unicast frame to a sleeping end device, MCPS-DATA.request
 with indicating "indirectTX" as TRUE shall be invoked.
- If the sending frame is unicast frame to other than sleeping end devices, MCPS DATA.request by indicating "indirectTX" as FALSE shall be invoked as usual.
- If the sending frame is broadcast frame and the coordinator has a sleeping end device as a neighbor by exchanging capability as described in 3.10.8, MCPS-DATA.request with "DstAddr" set as "0xffff" and with "indirectTX" set as "FALSE" shall be invoked and then MCPS-DATA.request shall be invoked per sleeping end devices by setting each MAC address with "indirectTX set as "TRUE".
- If the sending frame is broadcast frame but the coordinator has no sleeping end device
 as a neighbor, MCPS-DATA.request shall be invoked by setting "DstAddr" as "0xffff"
 and setting "indirectTX" as "FALSE"
- 2563 When a frame is buffered and a sleeping end device queried by "Data request" command 2564 frame, the coordinator send an acknowledgment frame with pending bit =TRUE. If there is 2565 no buffered frame for the sleeping end device, acknowledgment frame with pending bit 2566 =FALSE will be returned.
- In this profile specification, it is required that a coordinator including HEMS and relay device
 should have 8 indirect transmission buffers (8 x 255B) at least to assure to send fragmented
 IP packet (MTU = 1280 bytes).
- In this profile specification, macTransactionPersistenceTime in MAC PIB should be
 configured as '0x3d09' to extend timeout for indirect transmission to incorpolate a long sleep application device like a gas meter. The value '0x3d09' corresponds to '5 minutes' in
 non beacon enabled mode with the PHY specified in 3.7.2. This profile specification doesn't

2574 2575	avoid to use bigger value for this PIB if the implementer requires longer sleep application device.
2576	
2577	3.10.3.1.1.1. Purging operation
2578 2579	The next higher layer of MAC layer in a coordinator is recommended to invoke MCPS- PURGE.reuqest primitive in the situations described as following example
2580 2581	- When a data request command frame doesn't come from the sleeping end device for fair amount of time
2582	
2583	3.10.3.1.2. Sleeping end device requirement for the handling indirect transmission
2584 2585 2586 2587 2588 2588	The sleeping end device shall support transmission of "Data request" command frame to retrieve a buffered frame from the coordinator. When a sleeping end device needs to send a frame, it is done as well as other non-sleeping end device. When a sleeping end device wakes up and needs to check any frame is buffered during the sleep, it send a "Data request" command frame to the coordinator with which capability exchange is done during network joining.
2590	The Data request command frame shall not be encrypted in this profile.
2591	
2592 2593 2594	If acknowledgment frame with pending bit =TRUE is returned, the sleeping end device shall wait a frame from the coordinator for enough time to receive. (c.f. macMAXFrameTotalWaitTime is specified in [802.15.4].)
2595	
2596	
2597	3.10.3.2. MAC frame format
2598 2599	This clause shows the amendments in MAC frame format. If the HAN support relay functionality, it shall follow 3.9.3.2 as well.
2600	
2601	3.10.3.2.1. Capability Notification IE
2602 2603 2604	Capability Notify IE is a payload IE that is attached to Enhanced Beacon Request command frame or Enhanced Beacon frame to inform to corresponding node regarding what capabilities the sender has. A flags below is defined to be used to inform weather the device
	Wi-SUN Profile for HAN 176 of 206

supports sleeping end device extension. If the relay function is supported, flags for relaying
 support should be carried in same frame.

2607

Sleeping-support (bit 5) – if this flag is set, it indicates that the sender support sleeping
 extension. If the IE is carried by EBR, that indicates whether the sender device is sleeping
 end device. If the IE carried by EB, that indicates whether the sender supports indirect
 transmission to communicate with a sleeping end device. If a coordinator doesn't support
 sleeping end device extension or it doesn't have enough buffers for indirect transmission, it
 should not reply EB in response of EBR or should reply EB without this IE or with this IE
 setting this flag as zero.

2615

3.10.3.2.2. Acknowledgement frame

The acknowledgment frame for this recommendation shall support pending bit for
 transmission in a coordinator and for reception in sleeping end device to support indirect
 transmission.

- 2620
- 3.10.4. Interface part
- 2622 **3.10.4.1.** Overview
- The interface of a single-hop home network among devices for ECHONET Lite over IPv6 shall be compliant with clause 3.7.4 unless otherwise specified in the following sub clauses.
- 2625
- 3.10.4.2. Adaptation layer

It shall follow 3.8.4.2 in this document except other than the following limitation. The
6LoWPAN fragmentation should not be performed with more than 8 fragments since this
profile just requires a coordinator to have 8 indirect transmission buffers at least (see
3.10.3.1.1).

- 2631
- 2632 **3.10.4.3**. Network layer
- See 3.8.4.3 in this document.

- 2635 **3.10.4.3.1.** IP addressing
- See 3.8.4.3.1 in this document.
- 2637
- 2638 3.10.4.3.2. Neighbor discovery
- See 3.8.4.3.2 in this document.
- 2640
- 2641 **3.10.4.3.3.** Multicast

See 3.8.4.3.3 in this document for the basic operation. When the network layer needs to 2642 send IP Multicast (e.g. The destination address is FF02::1.) in a coordinator (PAN 2643 coordinator or relay device), it needs to invoke MCPS-DATA.request primitive of MAC layer 2644 for the regular devices and for each sleeping end device with indirect transmission 2645 respectively. A coordinator is informed whether a neighbor device is sleeping end device or 2646 not during bootstrap sequence. A data frame for the regular devices shall be with IP header 2647 which destination is multicast address and with MAC header which destination is broadcast 2648 address (0xffff) and a data frame for each sleeping end device shall be with IP header which 2649 destination is multicast address and with MAC header which destination is the end device 2650 address and shall be sent by unicast indirect transmission. 2651

- For example, a PAN coordinator invokes MCPS-DATA.request with MAC destination address as 0xffff to send an IP multicast packet. After that, it invokes MCPS-DATA.request with a MAC address for each sleeping end device to send the same IP packet. It will be done twice if a PAN coordinator has 2 sleeping end devicesregistered. A data frame which is sent by indirect transmission is stored into a frame buffer once and it is actually sent when Data request command is sent to the coordinator from an end device.
- When a relay device performs unicast indirect transmission to send multicast packet with SLR IE, it shall replace destination address, '0xffff' in SLR IE with EUI-64 address of a sleeping end device as well as it replaces MAC destination address '0xffff' with sleeping end device's EUI-64.
- 2662
- 3.10.4.4. Transport layer
- See 3.8.4.4 in this document.
- 2665

- 3.10.4.5. Application layer
- See 3.8.4.5 in this document.
- 2668
- 3.10.5. Security configuration

See 3.8.5, or see 3.9.5 if the HAN supports relay. All the transactions use indirect 2670 transmission for the communication from a coordinator to a sleeping end device. A data 2671 request from a sleeping end device to a coordinator is recommended to be done frequently 2672 so that time out may not happen during boot strap sequence. A PNR (PANA Notification 2673 Request) message with a REQ-Timeout-Modification-Request AVP (vendor specific AVP) is 2674 used to extend PANA time out in the HEMS to avoid a sleeping device to be deleted due to 2675 PANA session time out. In the response to PNR, the HEMS shall reply with the PNA with 2676 requested REQ-Timeout-Modification-Request AVP to the originator of PNR (the joining 2677 sleeping device). If the requested values are not valid or unacceptable, the HEMS shall 2678 return the default value (REQ IRT = 3, REQ MRT = 30) or acceptable value to the 2679 originator of the PNR. Since a broadcast frame for MLE update may be lost, an 2680 implementation for the sleeping end device is recommended to detect key update from a 2681 data frame. An implementation of sleeping end device may have no process to receive and 2682 deal MLE update if it can detect key update from a data frame. This procedure is 2683 recommended to be limited only for initial sequence immediately after PANA sequence of 2684 the bootstrapping before a device sends a data frame to make the management simple in 2685 the HEMS. 2686

When the HEMS handles key distribution in the network with sleeping end devices, it may take much time to finish all of key distributions. That may cause an issue that the HEMS takes much more time to update key. To reduce it, the HEMS may handle multiple PANA transactions for PaCs at same time.

- The definition of the REQ-Timeout-Modification-Requet AVP is as follows.
- 2692 REQ-Timeout-Modification-Requet AVP

Octets	Fields	Remark
2	AVP code	4
2	AVP flags	1, meaning V bit, indicates Vendor-ID field is present
2	AVP length	AVP value length is 4
2	Reserved	As a rule set to 0, but don't care
4	Vendor-ID	45605

2	REQ_IRT	Requested REQ_IRT in seconds. It shall be in the range 3 - 600.
2	REQ_MRT	Requested REQ_MRT in seconds, shall be more than or equal to REQ_IRT and it shall be in the range 3 - 600

 Table 4.8-56 REQ Timeout Modification Request : Message of PNR (ENC-ENCAP [REQ-Timeout-Modification-Request], AUTH, P-bit)

Field	Sub field	Size(octet)	Description
PANA	Reserved	2	
Message	Message Length	2	64
Header	Flags	2	'R'bit=1、'P'bit=1
	Message Type	2	4=PANA-Notification-Request
	Session Identifier	4	
	Sequence Number	4	
PANA Payload	Encryption- Encap AVP	24	REQ-Timeout-Modification-Request AVP is a vendor specific AVP containing RQT_IRT, RQT_MRT which is defined in this document. It is encrypted and encapsulated in Encryption-Encap AVP.
	REQ-Timeout- Modification- Request AVP	16	
	AUTH AVP	24	contains Message Authentication Code

2695

2693

2694

2696 2697

Table 4.8-57 REQ Timeout Modification Request : Message of PNA (ENC-ENCAP[REQ-Timeout-Modification-Request],AUTH, P-bit)

Field	Sub field	Size(octet)	Description	
PANA	Reserved	2		
Message	Message Length	2	64	
Header	Flags	2		'P'=1
-----------------	--	----	---	---
	Message Type	2		4= PANA-Notification-Answer
	Session Identifier	4		
	Sequence Number	4		
PANA Payload	Encryption-Encap AVP	60		REQ-Timeout-Modification-Request AVP is a vender-specific AVP containing RQT_IRT, RQT_MRT, which is added in this
	REQ-Timeout- Modification- Request AVP	5	2	specification. It is encrypted and then encapsulated in Encryption-Encap AVP.
	AUTH AVP	24		contains Message Authentication Code

- 3.10.6. Recommended network configurations
- 2699 **3.10.6.1**. Bootstrapping
- 3.10.6.1.1. Data link layer configuration
- 2701 See 3.8.6.1.1, or see 3.9.6.1.1 if the HAN supports relay functionality for other than the 2702 exception as follows.

When the sleeping end device invokes an active scan in order to detect a HEMS (PAN 2703 coordinator), it shall emit EBR including Capability Notification IE as well as MLME IE which 2704 sub ID is the Pairing IE. Coordinator which supports sleeping end device shall response EB 2705 including Capability Notification IE as well as MLME IE which sub ID is the Pairing IE as 2706 described in 3.10.3.2.1. When a non-sleeping end device described in 3.8 and 3.9 emits 2707 EBR without Capability Notification IE or emits EBR with Capability Notification IE but 2708 sleeping-support flag set as false, a coordinator shall response EB as described in 3.8 and 2709 3.9 respectively. If a transactions of EBR and EB with Capability Notification IE with 2710 sleeping-support flag between a coordinator and a sleeping end device, the sleeping end 2711 device is registered in the coordinator as a device to use indirect transmission to 2712 communicate. A coordinator in this profile shall have capability to register one sleeping end 2713 device at least. If a coordinator receive an EBR from another sleeping end device when 2714 there is no more capability to register a sleep end device, the coordinator response EB with 2715 disabled sleeping-support flag. If a coordinator which registered a sleep end device doesn't 2716 receive any frame during 3 times of macTransacionPersitenceTime, it can remove the 2717 registration. 2718

2720	3.10.6.1.2. Network layer configuration
2721	See 3.8.6.1.2 or see 3.9.6.1.2 if the HAN supports relay functionality.
2722	
2723	3.10.6.2. IP Address Detection
2724	Follows 3.8.6.2 or follow 3.9.6.2 if the HAN supports relay functionality.
2725	
2726	3.10.6.3. Authentication and Key Exchange
2727	Follows 3.8.6.3 or follow 3.9.6.3 if the HAN supports relay functionality.
2728	
2729	3.10.6.4. Application
2730	Follows 3.8.6.4 or follow 3.9.6.4 if the HAN supports relay functionality.
2731	
2732	3.10.7. Usage of credential
2733	Follows 3.8.7 or follow 3.9.7 if the HAN supports relay functionality.
2734	
2735	3.10.8. Discovery and selection of the HEMS network
2736	See 3.8.8 or see 3.9.8 for HAN with relay support with exceptions of using Capal Notification IE as described in 3.10.3.2.1 and of using indirect transmission for the

See 3.8.8 or see 3.9.8 for HAN with relay support with exceptions of using Capability
Notification IE as described in 3.10.3.2.1 and of using indirect transmission for the
communication from coordinator to sleeping end device as described in 3.10.3.1 and
3.10.3.2. An example sequence is illustrated in Figure 4.8-38.

2740

2742

3.11. Recommended usage for Route-IoT network

2744 **3.11.1. Overview**

This clause clarifies the recommended usage in constructing network between a smart 2745 meter and IoT devices (Route-IoT). The "IoT device" is a generic expression for a terminal 2746 which is attached to a gas meter, water meter, and so on to communicate with a (electricity) 2747 smart meter. Compliant nodes to this clause construct a network with the smart meter as a 2748 central coordinator as shown in Figure 4.8-39. This network consists of one smart meter 2749 and one or more IoT devices that act as end devices or sleeping end devices or relay 2750 devices. All coordinators described in this clause shall support sleeping end device. In this 2751 network, non ECHONET Lite application can be adopted as an upper layer application. 2752

2753

2756

2754

- 3.11.2. PHY part 2758
- See 3.8.2 in this document. 2759
- 3.11.3. MAC part 2760

This clause shows additional specifications for Route-IoT in MAC layer. What is specified 2761 here supersedes 3.8, 3.9, and 3.10 but other specifications should follow 3.8.3, 3.9.3, and 2762 3.10.3 respectively. 2763

- 3.11.3.1. Capability Notification IE (CN IE) 2764
- Figure 4.8-40 shows the structure of modified CN IE. 2765

In this CN IE, the "Application specific" field (bit 1-4) is introduced in this recommended 2766 usage. The bit 1 is a flag to use this field. If this flag is set, it indicates that sender set the 2767 application specific content (bit 2-4). This content is opaque at the MAC level and used by 2768 upper layers. If this flag is not set (0), the content (bit 2-4) shall be set to 0. 2769

2770

Bits: 0-7	8-	-14		15	Octets: Var		
Length		b-ID (67)		īype t format)	IE conte	nt	
					-		and a state of the
Bits: 0	1		2-4	5	6		7
Reserved	flag	со	ntent	ntent Sleeping- Relay-endpoint Relay		Relay-int	ermediate
(0) Application specific s		support	HAN re	av functio	n		

2771

2772

Figure 4.8-40 Capability Notification IE with Application specific field

Application specific

2774

2773

HAN relay function

3.11.4. Interface part

- 2776 **3.11.4.1. Overview**
- The interface of Route-IoT network shall be compliant with clause 3.10.4 unless otherwise specified in the following sub clauses.
- 2779
- 3.11.4.2. Adaptation layer
- See 3.10.4.2 in this document.
- 2782
- 2783 3.11.4.3. Network layer
- See 3.8.4.3 in this document.
- 2785
- 2786 **3.11.4.3.1.** IP addressing
- See 3.8.4.3.1 in this document.
- 2788
- 3.11.4.3.2. Neighbor discovery
- See 3.8.4.3.2 in this document.
- 2791
- 2792 **3.11.4.3.3.** Multicast
- See 3.8.4.3.3 in this document.
- 2794
- 3.11.4.4. Transport layer
- See 3.8.4.4 in this document.
- 2797
- 3.11.4.5. Application layer
- See 3.8.4.5 in this document.

2800	
2801	3.11.5. Security configuration
2802	See 3.10.5 and 3.8.5, or see 3.9.5 if the network supports relay.
2803	
2804	3.11.6. Recommended network configurations
2805 2806 2807 2808	The smart meter(s) and IoT device(s) share a "Pairing ID" with 8-octet length, and this ID is used in the network discovery. The IoT device selects a suitable smart meter for the IoT device to connect to from one or more smart meter candidates in the network discovery. The Pairing ID, NAI and pre-shared key for PANA/EAP are set to each node in advance.
2809	
2810	Note:
2811 2812 2813	The Pairing ID may be shared by several smart meters and IoT devices, or it may be unique for each smart meter and IoT device pair. The Pairing-ID is given in advance, which is assigned by someone (e.g., power company) via offline.
2814	
2815	See 3.8.6 in this document for radio channel and PAN ID settings.
2816	
2817	3.11.6.1. Bootstrapping
2818	3.11.6.1.1. Data link layer configuration
2819	See 3.10.6.1.1 in this document.
2820	
2821	3.11.6.1.2. Network layer configuration
2822	See 3.8.6.1.2 or see 3.9.6.1.2 if the network supports relay functionality.
2823	
2824	IP Address Detection
2825	Follows 3.8.6.2 or follow 3.9.6.2 if the network supports relay functionality.
2826	

- 3.11.6.1.3. Authentication and Key Exchange
- Follows 3.8.6.3 or follow 3.9.6.3 if the network supports relay functionality.
- 2829
- 2830 **3.11.6.1.4.** Application
- Follows 3.8.6.4 or follow 3.9.6.4 if the network supports relay functionality.
- 2832
- 3.11.7. Usage of credential
- In Route-IoT network, a Route-IoT specific credential (Table 4.8-58) is defined and required
 to use it. For this purpose, this subsection defines how to use the credential in the
 communication protocols.
- 2837
- 2838

Table 4.8-58 Route-IoT Credential

Name	Description
HAN authentication ID	Smart meter: Character string of 24 comprised of 0~9 and A~F ASCII characters (24 octets). The first character string of eight characters is "01000000" and the following string of 16 characters (16 octets) is described in hexadecimal notation of MAC address of smart meter. In this profile, this is converted to the ID ([NAI] format) used by PANA (EAP-PSK) by the rule described later.
	IoT device: Character string of 24 comprised of 0~9 and A~Z ASCII characters (14 octets). In this profile, this ID is used by PANA (EAP-PSK) as it is.
(HAN authentication) Password	Password linked to the HAN authentication ID (character string of 16 comprised of 0~9, a~z, and A~Z ASCII characters). In this profile, this is used in generating PSK, which is utilized in [EAP-PSK], by the rule following 3.8.7.2.

- 2840 3.11.7.1. Conversion of HAN authentication ID to EAP Identifiers
- Based on the HAN authentication ID, the following rules are used to generate the EAPIdentifiers.

[NAI generation rules]
Smart meter side NAI (EAP ID_S): "CTRL" + "HAN authentication ID of Smart meter" (24 octets)
IoT device side NAI (EAP ID_P): "HAN authentication ID of IoT device" (14 octets)
Example:
When Smart meter HAN authentication ID is "010000001111222233334444"
and IoT device HAN authentication ID is "55556666777788"
Smart meter side NAI (EAP ID_S): "CTRL010000001111222233334444"
IoT device side NAI (EAP ID_P): "55556666777788"
The MAC address in the Smart meter is supposed to be "1111222233334444"
The MAC address in the IoT device is "AAAABBBBCCCCDDDD", which is not related to the HAN authentication ID

2843

2844

3.11.8. Discovery and selection of the smart meter network

An IoT device uses an Enhanced Active Scan and detects one or more smart meters. The IoT device selects one smart meter to connect to based on the received EB. The IoT device starts the PANA authentication procedure with the selected smart meter after Enhanced Active Scan. If PANA authentication failed, the IoT device tries to authenticate PANA to other detected smart meters until PANA authentication succeeds. The IoT device can use an Enhanced Active Scan again to the all radio channels if it finds no smart meter on all channels or authentication fails.

2853

Figure 4.8-41 shows an example sequence for a shared Pairing ID in the smart meter
 discovery procedure. Figure 4.8-42 shows an example sequence for a unique Pairing ID in
 the smart meter discovery procedure.

2857

2858

Figure 4.8-41 Smart meter discovery procedure (Shared Pairing ID case)

2859 2860

2861

- Figure 4.8-42 Smart meter discovery procedure (Unique Pairing ID case)
- 2863

4.Wi-SUN profiles (ECHONET Lite over non IP)

2865 **4.1.** Overview

This section defines physical (PHY) and data link layers profiles and Wi-SUN ECHONET Lite interface to communicate between devices using non-IP and IEEE 802.15.4g and 4/4e. Wi-SUN ECHONET-Lite interface is an interface between ECHONET Lite application part and physical and MAC layer parts and transmits ECHONET Lite application data from one device to the other devices. Figure 4.8-43 shows the scope of this section. Figure 4.2-1 shows the Wi-SUN profile layer structure.

In this section, the mark of "M" indicates the mandatory functions in the standards
[802.15.4], [802.15.4g] and [802.15.4e], and "O" means optional functions. The marks of "Y"
and "N"mean the required and not-required functions in ECHONET Lite operation,
respectively. Specifications and procedures for certification and interoperability tests are
provided by [Wi-SUN-PHY], [Wi-SUN-MAC], [Wi-SUN-IF], [Wi-SUN-CTEST] and [Wi-SUNITEST].

2892 Figure 4.8-43 Scope defined by this section ("1: Not required in case addressing 2893 architectures are same between ECHONET Lite application layer and data link layer)

4.2. Protocol stack

2921

2896 Protocol stack for the device defined by this profile is shown in Figure 4.8-44.

2897								
2898	Layer 5-7	Application layer (ECHONET Lite)						
2899								
2900								
2901								
2902		Wi-SUN ECHONET Lite Interface part						
2903								
2904								
2905	Layer 2	MAC part (MAC profiles based on IEEE 802.15.4/4e)						
2906		(INAC PIONES DASED ON TELE 002.15.4/48)						
2907		PHY part						
2908	Layer 1	(PHY profiles based on IEEE 802.15.4g)						
2909								
2910	•	cture defined by this section (*1: Not required in case add between ECHONET Lite application layer and data link	•					
2911	architectures are same		layel)					
2912	PHV lover provides the fel	lowing service under this profile.						
2913								
2914 2915	 Up-to-2047 bytes PSD as mentioned later) 	OU exchange (Note that the profile recommends 255 byte	s or less					
2916	,							
2917	Data link (MAC) layer prov	vides the following services under this profile.						
2918		of IEEE 802.15.4 PAN in radio propagation range						
2919	 Support of low energy hosts that can change its status between active and sleep status 							

• Security functions that includes encryption, manipulation detection and replay attack

protection (Note that key management is not performed by this layer)

Wi-SUN Profile for HAN

 $193\,$ of $206\,$

2922

- Application layer provides the following services under this profile.
- Detection of functional units (ECHONET object) employed by the other nodes in the network
- Acquisition of parameters and statuses (ECHONET property) for the other nodes
- · Configuration of parameters and statuses for other nodes
- Notification of parameters and statuses for the local node
- 2929 **4.3.** PHY part
- 2930 Refer to "3.3 PHY part"
- 2931 4.4. MAC part
- 2932 Refer to "3.4 MAC part"
- 4.5. Wi-SUN ECHONET Lite Interface part

2934 **4.5.1.** Overview

Wi-SUN ECHONET Lite interface shall provide a function to communicate between ECHONET Lite application part and Wi-SUN PHY and MAC layer. This part is not required in case addressing architectures are same between ECHONET Lite application layer and data link layer. This interface can improve high frame utilization efficiency by reducing overhead when IP is used.

- 4.5.2. Requirement
- (1) Wi-SUN ECHONET Lite interface shall specify unique destination address and shall
 configure an ECHONET Interface header by specifying source address and Interface
 Type. In the case, the Interface Type shall use 0xEC00.
- (2) Wi-SUN ECHONET Lite interface shall know address configuration used in MAC layer
 in advance. The address configuration may be 64 bit IEEE Address.
- (3) Wi-SUN ECHONET Lite interface shall convert the unique specified destination
 address in Wi-SUN ECHONET Lite to MAC address used in MAC part and transmit to
 MAC part.

(4) Wi-SUN ECHONET Lite interface shall analyze the unique specified destination
 address. When the destination address is multicast address, the interface shall instruct
 MAC layer to do broadcast transmission.

4.6. Application layer

Wi-SUN ECHONET Lite interface shall support ECHONET Lite [EL] as application layer.
 The node implemented specifications in this document shall support mandatory function
 defined in [EL].

2956 **4.7.** Security

There are two ways for security in Non-IP based communications. Either way shall be selected.

- Data encryption on MAC layer
- Data encryption on Wi-SUN ECHONET Lite interface

AES-CCM and/or AES-GCM shall be used in the case of data encryption for Wi-SUN 2961 ECHONET Lite interface [EL][CMAC][AES-CCM][AES-GCM]. To use AES-CCM and/or AES-2962 GCM, MIC (message integrity code) shall be used. In the case of data encryption on MAC 2963 layer, the MIC and/or AAD (Additional Authenticated Data) shall be included in the 2964 IEEE802.15.4 MAC frame defined by [802.15.4], respectively. On the other hand, in the case 2965 of data encryption on Wi-SUN ECHONET Lite interface, the MIC shall be included in the 2966 security header described in Section 4.9.1.4.5. Multiple keys can be managed and stored in 2967 the interface part. Since field of security ID in the security header (Figure 4.8-55) is 1 byte, 2968 255 keys can be managed. 2969

4.8. Device ID

2971 As an optional function, Wi-SUN ECHONET Lite interface may use unique device ID allocated for each ECHONET Lite device. The device ID is used in order to identify 2972 ECHONET devices. The value in this field is to be defined in the future according to the 2973 implementers' preferences and not in the current version. The length of the device ID is 8 2974 bytes. MAC address may be used for initial setting of the device ID. In the case, there are 2975 two kinds of payloads: information payload and setting payload. Information payload will be 2976 used for the transmission and receipt of ECHONET Lite information data, and setting 2977 payload will be used for the transmission and receipt of device ID. 2978

4.9. Frame format

This section describes frame format to support f Wi-SUN ECHONET Lite payload. The frame format is dependent whether Wi-SUN ECHONET Lite interface part is used or not.

- 4.9.1. The case interface part is employed
- 4.9.1.1. The case when data is encrypted on MAC layer

A sample procedure of frame formatting in the case when data is encrypted on MAC layer is shown in Figure 4.8-45 - Figure 4.8-47. This is the case that destination and source MAC addresses in ECHONET Interface header are different from those in IEEE 802.15.4 MAC header. But integration between those in both headers may be possible.

Wi-SUN Profile for HAN

 $198\,$ of $206\,$

4.9.1.3. The case when data is encrypted on Wi-SUN ECHONET Lite interface and optional 3017 device ID is used 3018

A sample procedure of frame formatting in the case when data is encrypted on Wi-SUN 3019 ECHONET Lite interface and optional device ID is used is shown in Figure 4.9-7 - Figure 3020 4.9-9. This is the case that destination and source MAC addresses in ECHONET Interface 3021 header are different from those in IEEE 802.15.4 MAC header. But integration between 3022 those in both headers may be possible. 3023

2024

3024										
	Vari	able								
	ECHONET L	ite Payload								
3025										
3026			Figure4	.8-51 EC	CHONET	-Lite payle	oad			
3027										
3028	8Byte	8Byte	2Byte	1Byte		9Byte	Variable		8Byte	
3029	Destination MAC address	Source MAC address	Interface Type	Protocol i	nfo Secu	irity header	Data Payload		MIC	
3030										
3031	ECI	HONET Interface	header ►	J			Encrypted par	rt		
3032	F	igure4.8-52	2 Frame co	nfigurec	l by Wi-S	SUN ECHO	ONET Lite inte	erface		
3033										
	Variable	8Byte Destination	8Byte Source	2Byte	1Byte		Variable	8Byte	2Byte	
	IEEE802.15.4 hea	MAC addres		nterface Type	Protocol info	Security header	Data Payload	MIC	FCS	I
3034			CHONET Interface he	eader ►			Encrypted part			
3035		Figure4	.8-53 IEEE	802.15.4	frame c	onfigured	by MAC laye	er		

- 3037 4.9.1.4. Elements in frame
- 3038 4.9.1.4.1.ECHONET Lite payload
- ECHONET Lite payload consists of ECHONET Lite information generated by ECHONET
 Lite application part.
- 3041 4.9.1.4.2. ECHONET Interface header
- 3042 Ether2 header is unique header used in WI-SUN ECHONET Lite interface. Figure 4.8-54 3043 shows the format.

- 3064 4.9.1.4.3.IEEE802.15.4 header
- IEEE802.15.4 header is a header for data transmission and receipt and is generated by
 MAC part.
- 3067 4.9.1.4.4.FCS (Frame check sequence)
- 3068 FCS is a frame check sequence generated by MAC part.
- 3069
- 3070 **4.9.1.4.5.Security header**
- Security header defines information on encryption of transmission data. Figure 4.8-55
 shows the format.
- 3073

3074	Byte #_	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0				Security	key ID			
3075	1								
3076	2					· c			
3070	3				Nonce : Reset	information			
3077	4								
	5								
3078	6								
3079	7				Nonce: Mess	age counter			
3077	8								
3080									

Figure 4.8-55 Format of security header

3082

3081

- 3083 (a) Security key ID
- 3084 Security key ID is an identifier corresponds to encryption key used.
- 3085 (b) Nonce (byte# 1-8)
- A unique number is set to each transmission data and encrypted with data. The followings
 define each element.
- 3088 Reset information (byte# 1-4): The number is incremental when the device is reset.
- Message counter (byte# 5-8): This is counter that counts the number of messages transmitted

- 3091 4.9.1.4.6.MIC (Message Integrity Code)
- 3092 The code is used for AES-CCM encryption.
- 3093 **4.9.1.4.7.Protocol info**

Protocol info defines class of protocol. The info is mainly used when unique device ID is used and consists of version information and protocol class. Figure 4.8-56 shows the format.

203 of 206

	re4 8-601FFF802 15 4	frame c	onfigured by MAC layer
IEEE802.15.4 header	ECHONET Lite Payload	FCS	

3134

3133

4.10. Recommended usage for single-hop network

3136 **4.10.1. Overview**

This clause clarifies the recommended usage in constructing single-hop network for ECHONET Lite over non IP. Note that this profile does not exclude other usages.

Compliant nodes to this clause constructs single hop network where a coordinator is centered. And, with assuming a gateway connection provided by application layer as the connection measure to the outer networks, a closed IP network is assumed inside this profile. On those assumptions, the indoor network construction based on ECHONET Lite provides expandability as well as feasibility.

- 3144 4.10.2. Construction of new network
- Once turned on, a coordinator constructs a new network compliant to this profile. The
- network construction are conducted by successive steps of (1) data link layer configuration,
- (2) network layer configuration and (3) security configuration. Overview of the network
 construction procedure is shown in Figure 4.8-61.
- 3149

3150

3151

Figure4.8-61 Overview of network construction procedure

- 3152
- 3153 4.10.2.1. Data link layer configurations
- Once turned on, a coordinator constructs a IEEE 802.15.4 PAN. Detailed procedures for PAN construction is shown as follows.
- The coordinator first selects an employed channel. The channel selection is conducted via ED scanning or active scanning. In the selection, channel with less interference to the other systems are more preferable. (Step 1)
- Next, the coordinator selects the PAN ID that is not occupied on the selected channel in Step 1, and define it as the PAN ID for the local network. Selection criteria of PAN ID out of candidate IDs is out of scope of this profile. (Step 2)
- 3162 With conducting of the previous steps, PAN construction by the coordinator is completed.
- 3163 4.10.2.2. Security configurations
- The coordinator conducts security configurations following data link layer and network layer configurations. Security technologies employed in the constructed network should be selected according to the application requests. This profile does not describe a concrete procedure for security configurations conducted by the coordinator.
- 3168 4.10.3. Association to the network
- Once turned on, a new host tries to association to the existing network compliant to this profile. Association procedure by the host includes (1) data link layer configuration, (2) network layer configuration and (3) security configuration just in a same manner as PAN construction by a coordinator. Overview of association procedures to the existing network by a host is shown in Figure 4.8-62.
- 3174

3175

Wi-SUN Profile for HAN

 $205\,$ of $206\,$

3176 Figure 4.8-62 Overview of association to the network

- 3177
- 3178 4.10.3.1. Data link layer configurations

After turned on, a new host conducts IEEE 802.15.4 PAN detection existing around. The PAN detection is conducted by the successive procedures; the host broadcasts a beacon request commands that is defined in [802.15.4] on all available channels out of radio channels defined in [802.15.4] and [T108], a coordinator that receives the command returns a beacon frame as a response, and the new host receives the beacon. Moreover, the new host recognizes a radio channel and PAN ID employed by the coordinator, as results of those procedures. (Step 1)

- In case only one PAN is detected, the host moves to the next step as for the PAN. In case several PANs are detected, the host needs to select one PAN in order to move to the next step. PAN selection criteria for the latter case is implementation matter and out of scope of this profile. (Step 2)
- The new host conducts association procedures defined in IEEE 802.15.4 to the selected PAN in Step 2. (Step 3)

In case the host fails to associate to the PAN by those association procedures, for example owing to rejection by the coordinator, the host is recommended to retry the procedures from Step 1 or Step 2, where the other network should be tried in Step 2.

3195 4.10.3.2. Security configurations

The new host conducts security configurations after data link layer and network layer configurations. Security technologies employed in the constructed network should be selected according to the application requests. This profile does not describe concrete procedures for security configurations.

- 4.10.4. Specifications for device/PHY layer/MAC layer in order to realize the
 recommended usage
- 3202 Refer to "3.6.2 and 3.6.3."
- 3203
- 3204