日付:2003年12月5日 提出元: GlobespanVirata, Inc. 題名:EU-C上り拡張の干渉について

ABSTRACT

The present contribution evaluates the Impact of CTLM Extended Upstream Systems defined in [1] and [2], into Annex Abis FDM and Annex Abis overlap.

According to the simulations, the Annex Abis FDM Downstream relative percentage rate Loss due to EU-64 is increasing from ~13% up to ~40% between 2km and 3.5km. Up to 3.5km, the maximum downstream relative percentage rate loss due to GSV EU [4] is only ~15%.

These numbers mean that CTLM EU seriously impacts the downstream performance of essential DSL systems in Japan. Spectral compatibility of CTLM EU should therefore be questioned.

GSV EU system [4] demonstrates a much better compromise than CTLM EU between Upstream performance improvement and impact into downstream channels of already deployed systems.

1 Introduction

The present contribution evaluates the Impact of Extended Upstream Systems defined in [1] and [2] into Annex Abis FDM, Annex Abis Overlap. Section 2 & 3 details the Upstream and Downstream masks features. Simulation conditions are given in section 4. Impact is checked in section 5.

2 Extended Upstream Mask Definition

Figure 1 and Table 1 detail the extended upstream PSD mask copied from G.992.5 Annex M. The parameters for the family of PSDs in Table 1 are proposed for the FEXT bitmap, and those in Table 2 are proposed for the NEXT bitmap.

Figure 1. EU g.992.5 Annex M EU Peak values, from [2]

Table 1. From [2] Annex M g.992.5 EU masks

Frequency (kHz)	PSD level (dBm/Hz)	Measurement BW
0	-97.5	100 Hz
4	-97.5	100 Hz
4	-92.5	100 Hz
10	interpolated	10 kHz
25.875	Inband_peak_PSD	10 kHz
f1	Inband_peak_PSD	10 kHz
f_int	PSD_int	10 kHz
686	-100	10 kHz
5275	-100	10 kHz
12000	-100	10 kHz

|--|

Upstream Mask- Number	2.1 Des ign ator	Template Nominal PSD P ₀ (dBm/Hz)	Template Maximum Aggregate Transmit Power (dBm)	Inband Peak PSD (dBm/Hz)	Frequency <i>f1</i> (kHz)	Intercept Frequency f_int (kHz)	Intercept PSD Level PSD_int (dBm/Hz)
1	EU-32	-38.0	12.5	-34.5	138.00	242.92	-93.2
2	EU-36	-38.5	12.5	-35.0	155.25	274.03	-94.0
3	EU-40	-39.0	12.5	-35.5	172.50	305.06	-94.7
4	EU-44	-39.4	12.5	-35.9	189.75	336.33	-95.4
5	EU-48	-39.8	12.5	-36.3	207.00	367.54	-95.9
6	EU-52	-40.1	12.5	-36.6	224.25	399.07	-96.5
7	EU-56	-40.4	12.5	-36.9	241.50	430.58	-97.0
8	EU-60	-40.7	12.5	-37.2	258.75	462.04	-97.4
9	EU-64	-41.0	12.5	-37.5	276.00	493.45	-97.9

Table 3: from [2] Parameters for Annex C extended upstream in NEXT bitmap

Upstream Mask- Number	2.2 Des ign ator	Template Nominal PSD P ₀ (dBm/Hz)	Template Maximum Aggregate Transmit Power (dBm)	Inband Peak PSD (dBm/Hz)	Frequency <i>f1</i> (kHz)	Intercept Frequency <i>f_int</i> (kHz)	Intercept PSD Level PSD_int (dBm/Hz)
1	EU-32	-38	12.5	-34.5	138.00	242.92	-93.2
2	EU-36	-38.7	12.5	-35.2	155.25	273.47	-94.0
3	EU-40	-39.9	12.5	-36.4	172.50	302.26	-94.7
4	EU-44	-40.7	12.5	-37.2	189.75	331.87	-95.3
5	EU-48	-41.4	12.5	-37.9	207.00	361.55	-95.8
6	EU-52	-41.8	12.5	-38.3	224.25	392.16	-96.4
7	EU-56	-42.1	12.5	-38.6	241.50	423.12	-96.9
8	EU-60	-42.3	12.5	-38.8	258.75	454.51	-97.3
9	EU-64	-42.3	12.5	-38.8	276.00	486.91	-97.8

Note. There is an inconsistency between Figure 1 and Tables 2 and 3 regarding the slope of the low frequency edge of the Extended Upstream Systems. According to Figure 1, the slope should be constant and equal to 21.5dB/octave. Since the PSD flat peak value changes and since the corner point at 4Khz and the cut-off frequency of 25.875KHz are fixed, then the slope should change. Table 4 gives the slope value of the low frequency edge for both NEXT and FEXT Bit map consistent with tables 2 and 3.

System	FEXT Slope dB/Oct	NEXT Slope dB/Oct
EU-32	21.53	21.53
EU-36	21.34	21.27
EU-40	21.16	20.82
EU-44	21.01	20.53
EU-48	20.86	20.27
EU-52	20.75	20.12
EU-56	20.64	20.01
EU-60	20.53	19.93
EU-64	20.41	19.93

Table 4. Slopes of the Low frequency edge

3 Downstream Masks used

To evaluate the impact of EU systems, the g.992.1 FDM downstream mask is considered, as in [2]. Pilot Tone 64 is not loaded.

4 Simulation Conditions

4.1 Loop

0.4mm Poly, Loops should be 0 - 5km with a 250 meter step size.

4.2 Noise Conditions

For each of the tested system 2 Noise conditions are considered:

- *Reference*. Each system is disturbed by one SELF cross talk deployed in the same quad.
- *Impact.* Each system is disturbed by one Intra-Quad EU Systems (Two EU systems are considered EU-48 and EU-64).

4.3 NEXT & FEXT Coupling
99%
NEXT: 50.5dB
FEXT: 54dB

4.4 CPE Injection Points

All the cross talks are co-located at the CPE.

4.5 Simulation Tunings

Generic Tunings, see Table 5.

Table 5. Simulation Tunings

Margin	6dB
Bit Loading Range	2 bits to 15 bits
Cut back	Power Cut back OFF
Echo	70dB attenuation

Bit Loading, Channel coding¹ and payload Rate calculation, see [3].

¹ A slight modification has been introduced to take into account an odd number of 2D symbols.

5 Simulation Results

5.1 Systems Evaluated

- Annex Abis FDM
- Annex Abis Overlap

5.2 Simulations Summary

Table 6 gives the Impact simulations summary.

Disturbers Systems	Reference (SELF) 1 Intra 99%	EU-64 1 intra 99%
Annex Abis fdm	rate vs reach DS, US	rate vs reach DS, US
AnnexAbis OL	rate vs reach DS, US	rate vs reach DS, US

Table 6. EU Impact, Simulations Summary

5.3 Simulation results

Figure 2 to 5 display the simulation results according to table 6. According to figure 4, the Downstream relative percentage rate Loss due to EU-64 is increasing from ~13% up to ~40% between 2km and 3.5km. Up to 3.5km the maximum Downstream relative percentage rate loss due to GSV EU [4] is only ~15%.

Figure 3. Annex Abis OL Downstream performance, 1 Intra-Quad Disturber (99%) SELF versus EU-64

Figure 4. relative Loss of Annex Abis FDM DS and Annex Annex Abis OL DS due to EU-64, versus SELF

Figure 5. relative performance Loss of Annex Abis FDM DS and Annex Abis OL DS due to EU-GSV [4], versus SELF

6 Conclusions

The present contribution evaluates the Impact of CTLM Extended Upstream Systems defined in [1] and [2], into Annex Abis FDM and Annex Abis overlap.

According to the simulations, the Annex Abis FDM Downstream relative percentage rate Loss due to EU-64 is increasing from ~13% up to ~40% between 2km and 3.5km. Up to 3.5km, the maximum downstream relative percentage rate loss due to GSV EU [4] is only ~15%.

These numbers mean that CTLM EU seriously impacts the downstream performance of essential DSL systems in Japan. Spectral compatibility of CTLM EU should therefore be questioned.

GSV EU system [4] demonstrates a much better compromise than CTLM EU between Upstream performance improvement and impact into downstream channels of already deployed systems.

7 References

[1]SKS03-CTLM02, "Comparison of Extended Upstream proposals", Centililium Communications, Tokyo, Japan, Septem

[2] SMS05-CTLM-01, "Update of Extended Upstream proposal", Centilium Communications, Tokyo, November 21, 200

[3] SKS-03-CTLM-01, "Extended Upstream performance Criteria", Centilium Communications, Tokyo, September 29-30

[4]SKS-03-GSV04, "3/50 Spectral Compatibility revision r1", GlobespanVirata, Tokyo, September 29-30, 2003.